研究报告
陈豪宇,张胜利,凯橙橙,张思略,姜曼,周祚万,付金丽.聚乙烯亚胺改性纤维素纤维对Cr (Ⅵ)的吸附研究[J].环境科学学报,2018,38(8):3090-3098
聚乙烯亚胺改性纤维素纤维对Cr (Ⅵ)的吸附研究
- Polyethyleneimine modified cellulose fiber for Cr(Ⅵ) removal from aqueous solution
- 基金项目:四川省科技支撑项目(No.2016GZ0222)
- 陈豪宇
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 张胜利
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 凯橙橙
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 张思略
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 姜曼
- 西南交通大学材料科学与工程学院, 成都 610031
- 周祚万
- 西南交通大学材料科学与工程学院, 成都 610031
- 付金丽
- 成都丽雅纤维股份有限公司, 成都 610300
- 摘要:采用低浓度H2O2氧化纤维素水凝胶纤维,再接枝聚乙烯亚胺(PEI),成功制得PEI改性纤维素纤维(PEI-OCF)吸附剂,并将其用于溶液中Cr(Ⅵ)的去除.同时,利用傅里叶变换衰减全反射红外光谱(ATR-FTIR)和X射线能谱(EDX)分析,确证纤维素上的羟基被H2O2氧化成醛基,PEI通过席夫碱反应被接枝到氧化纤维素上.制备优化结果表明,H2O2氧化阶段的最佳条件为pH=4.0,H2O2质量分数0.2%,氧化时间3.0 h,氧化温度85℃;PEI接枝阶段的最佳条件为pH=11.0,PEI质量分数3.0%,接枝时间0.5 h.吸附研究结果显示,Cr(VI)在PEI-OCF上的吸附具有强烈的pH依赖性,最佳pH值为2.0.在180 min时吸附达到平衡;吸附过程符合准二级动力学模型,且主要由化学吸附控制.与Freundlich模型相比,Langmuir模型能更好地描述吸附过程;当温度为15和25℃时,最大吸附量分别为110.61和119.04 mg·g-1.浓度为300和600 mg·L-1的共存离子Ca2+、Mg2+和Na+对PEI-OCF吸附Cr(VI)的影响较小.上述结果表明,PEI-OCF对Cr(Ⅵ)吸附性能良好,使用中易于分离;且制备过程无需交联剂,使用可降解材料,绿色环保.
- Abstract:Polyethyleneimine modified cellulose fiber (PEI-OCF) was successfully prepared by grafting polyethylenimine (PEI) onto oxidized cellulose fiber, which was obtained via hydrogen peroxide (H2O2) oxidizing cellulose gel. Meanwhile, the removal of Cr(VI) from aqueous solution by PEI-OCF was carried out. It was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATRFT-IR) and energy dispersive X-ray spectroscopy (EDX) that the hydroxyl groups of cellulose were oxidized to aldehyde groups by H2O2, and PEI was introduced onto the oxidized cellulose via Schiff-base reaction. The optimal preparation conditions were investigated in batch mode. Results show that the optimum oxidation conditions were pH of 4.0, 0.2% of H2O2 concentration, 3.0 h of oxidation time and 85℃ of oxidation temperature. At PEI-grafting stage, the optimum conditions were pH 11.0, 3.0% of PEI concentration, and 0.5 h of oxidation time at room temperature. Adsorption results show that Cr(VI) adsorption on PEI-OCF was highly pH-dependent, and the optimum pH was 2.0. The adsorption equilibrium reached at about 180 min. The adsorption system followed pseudo-second-order kinetic model, and chemisorption was the rate-limiting step. The Langmuir isotherm model gave a better fitting to the equilibrium data than the Freundlich isotherm model. The maximum adsorption capacity was 110.61 and 119.04 mg·g-1 at 15 and 30℃, respectively. Coexisting ions under 300 and 600 mg·L-1 of (Ca2+, Mg2+ and Na+) had no significant effect on the adsorption capacity of Cr(VI). In conclusion, the prepared PEI-OCF has a good adsorption capacity for Cr(VI) pollutant and is easily separated from the aqueous solution. Furthermore, the preparation of PEI-OCF is an environmentally friendly process with biodegradable cellulose as raw material and without using any crosslink agents.