研究报告

  • 聂明华,黄娴,晏彩霞,杨毅,周俊良,刘敏.利用PARAFAC及SOM研究不同来源及粒径胶体的三维荧光光谱特征[J].环境科学学报,2018,38(9):3672-3681

  • 利用PARAFAC及SOM研究不同来源及粒径胶体的三维荧光光谱特征
  • Fluorescence characterization of fractionated colloids in different sources of waters based on PARAFAC and SOM
  • 基金项目:国家自然科学基金(No.41601523,41601521);江西省自然科学基金(No.20161BAB213079,20161BAB213077);鄱阳湖湿地与流域研究教育部重点实验室开放基金(No.PK2016006);江西省教育厅科技计划项目(No.GJJ150307,GJJ160320);江西师范大学博士启动基金
  • 作者
  • 单位
  • 聂明华
  • 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022
  • 黄娴
  • 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022
  • 晏彩霞
  • 1. 江西师范大学地理与环境学院, 鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022;2. 华东师范大学河口海岸学国家重点实验室, 上海 200062
  • 杨毅
  • 1. 华东师范大学河口海岸学国家重点实验室, 上海 200062;2. 华东师范大学地理科学学院, 教育部地理信息科学重点实验室, 上海 200241
  • 周俊良
  • 华东师范大学河口海岸学国家重点实验室, 上海 200062
  • 刘敏
  • 华东师范大学地理科学学院, 教育部地理信息科学重点实验室, 上海 200241
  • 摘要:利用三维荧光光谱法(3D-EEM)结合平行因子分析(PARAFAC)和自组织神经网络分析(SOM),解析了不同来源水体中不同粒径胶体的荧光特性,同时与挑峰法进行比较,以期寻找一种更好的分析天然胶体来源、粒径、荧光特性间关系的方法.基于PARAFAC模型,研究区水体中不同粒径胶体共解析出2个类腐殖质荧光峰(C1和C3)及3个类蛋白荧光峰(C2、C4和C5).其中,300 kDa~1 μm分级胶体荧光强度最高,C1、C2、C3组分的荧光强度随粒径增大而增强,C4、C5组分的荧光强度随粒径增大而减弱.不同来源胶体(生活污水:进水和出水;农业污水:大盈和天恩桥;天然水体:吴淞口)的荧光强度变化大致规律为:吴淞口 > 进水 > 大盈 > 天恩桥 > 出水.SOM分析结果与PARAFAC一致,且可视化程度更高,但EEM-SOM模型存在输入变量多、兼具挑峰法缺点的问题.而PARAFAC-SOM模型不仅兼具了前两者的优点,还具有输入变量少、运行时间短、可靠性高等优点.同时,该模型还成功应用于胶体其他理化参数的分析(Parameters-SOM模型),使得前期工作结果系统性更强、更直观.因此,PARAFAC-SOM模型是相对较好的分析天然胶体来源、粒径、荧光特性间关系的方法.
  • Abstract:Fluorescence characterization of fractionated colloids in different sources of waters is investigated using excitation emission matrix fluorescence spectroscopy (3D-EEM) based on parallel factor analysis (PARAFAC) and self-organizing map (SOM). Meanwhile, the results in the present study are compared to those in the previous study which were analyzed based on the peak-picking method. This study aims to evaluate the different approaches including PARAFAC, SOM and combined PARAFAC and SOM to investigate the size-dependent fluorescence properties of colloids from different sources. PARAFAC identified two humic-like fluorophores (i.e. C1 and C3) and three protein-like fluorophores (i.e. C2, C4 and C5). Thereinto, the fluorescence intensity of C1, C2, and C3 increases with the increased colloidal size; for C4 and C5, the fluorescence intensity decreases. The highest fluorescence intensity is generally present in the 300 kDa~1 μm fraction. The fluorescence intensity of bulk waters from the different sources including domestic wastewaters (Influent and Effluent), agricultural wastewaters (Daying and Tianenqiao) and the pristine natural river (Wusongkou) is decreased as the following order:Wusongkou > Influent > Daying > Tianenqiao > Effluent. The results in SOM model are agreed with those in PARAFAC model, but with a higher visualization. Furthermore, EEM-SOM model needs more input variables and has the same problem as those of peak-picking method. PARAFAC-SOM model not only has the advantages of PARAFAC and EEM-SOM model, but also has advantages on fewer input variables, shorter running time, and higher reliability. In addition, PARAFAC-SOM model was successfully applied to analyze the physicochemical properties of colloids (i.e. Parameters-SOM model). Parameters-SOM model makes the results in the previous study more systematic and visual. Therefore, PARAFAC-SOM model is the best approach to visualize the relationship between colloidal size and the fluorescence properties from different sources.

  • 摘要点击次数: 983 全文下载次数: 1107