本期目录
陈佼,陆一新,张建强,汪锐,黄雯.饥饿对人工快速渗滤系统硝化性能的影响[J].环境科学学报,2018,38(12):4703-4712
饥饿对人工快速渗滤系统硝化性能的影响
- Impact of starvation on the nitrification performance of constructed rapid infiltration systems
- 基金项目:国家自然科学基金(No.41502333);四川省环境污染防治重点研发项目(No.2017SZ0179);四川省科技计划项目(No.2017GZ0375,2018GZ0415);大学生创新创业训练计划项目(No.201811116108)
- 陈佼
- 1. 成都工业学院建筑与环境工程学院, 成都 611730;2. 西南交通大学地球科学与环境工程学院, 成都 611756
- 陆一新
- 1. 成都工业学院建筑与环境工程学院, 成都 611730;2. 西南交通大学地球科学与环境工程学院, 成都 611756
- 张建强
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 汪锐
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 黄雯
- 西南交通大学地球科学与环境工程学院, 成都 611756
- 摘要:为探究饥饿条件下人工快速渗滤(CRI)系统硝化性能的衰减及恢复情况,分别考察了不同饥饿时间(5、10、15、20 d)对稳定运行的CRI系统(C1、C2、C3、C4)内氮素污染物转化、硝化细菌活性及胞外多聚物(EPS)组分的影响.结果表明,C1、C2、C3分别在恢复进水3、7、10 d后NH4+-N去除率可恢复至60%左右,而C4在恢复进水24 d后NH4+-N去除率仅有40%左右;C2、C3、C4在恢复进水后均表现出不同程度的NO2--N积累现象,积累率最终分别稳定在25%、65%、80%左右.稳定运行期间亚硝酸氧化菌(NOB)的活性高于氨氧化菌(AOB),而饥饿期超过10 d时NOB的衰减速率开始高于AOB;经10、15 d饥饿后AOB活性可恢复至饥饿前水平而NOB活性无法完全恢复,导致NO2--N积累;经20 d饥饿后AOB和NOB活性均难以恢复至饥饿前水平,导致NH4+-N去除率下降.饥饿期间EPS能为CRI系统内的微生物提供碳源和能源,维持细胞的新陈代谢;蛋白质(PN)/多糖(PS)比随着饥饿时间的延长而降低,表明饥饿期间对PN的利用更加显著.研究结论可为饥饿条件下CRI系统的运行优化提供理论支持,同时为进一步探寻饥饿时硝化性能的稳定调控策略奠定了基础.
- Abstract:To study the decay and recovery for nitrification performance of constructed rapid infiltration (CRI) system under starvation condition, the impact of different starvation time (5, 10, 15 and 20 d) on nitrogen transformation, nitrifier activity and extracellular polymeric substances (EPS) components in the stable CRI systems (C1, C2, C3 and C4) were investigated. The results showed that NH4+-N removal rates of C1, C2 and C3 could recover to about 60% after a 3, 7 and 10 d recovery, respectively, while it could only recover to 40% after a 24 d recovery in C4. C2, C3 and C4 showed obvious accumulation of NO2--N after recovering influent, and the accumulation rates were finally stabilized at about 25%, 65% and 80%, respectively. The activity of nitrite-oxidizing bacteria (NOB) was higher than that of ammonia-oxidizing bacteria (AOB) during the stable period, while the decay rates of NOB exceed AOB when the starvation period was over 10 days. AOB activity could restore to pre-starvation level after a 10 and 15 d starvation while NOB activity could not fully recovered, resulting in the accumulation of NO2--N. The activity of AOB and NOB were difficult to recover to pre-starvation level after a 20 d starvation, leading to the decrease of NH4+-N removal. EPS could provide carbon source and energy for microbes in CRI systems to maintain cell metabolism during starvation. The protein (PN)/polysaccharide (PS) decreased as the starvation time prolonged, indicating that the utilization of PN had more significant effect during starvation. The results could provide theoretical support for the operation optimization of CRI system under starvation condition, and lay a foundation for further exploring the stabilization control strategy of nitrification performance in starvation.