研究论文
刘时光,王晓玲,王元涛,王晓敏,宋以萍,蒋莹莹,祝贵兵.稻田土壤氧化亚氮产生潜势、反硝化功能基因丰度和群落结构的垂向分布[J].环境科学学报,2020,40(3):1040-1050
稻田土壤氧化亚氮产生潜势、反硝化功能基因丰度和群落结构的垂向分布
- The potential of nitrous oxide, denitrification function gene abundance, and vertical distribution of community structure in paddy soil
- 基金项目:国家自然科学基金(No.41671471,41322012和91851204);广东省"珠江人才计划"本土创新科研团队项目(No.2017BT01Z176);国家长江生态环境保护修复联合研究中心项目(No.2019-LHYJ-01-0103);中国科学院生态环境研究中心长江保护专项项目(No.RCEES-CJBH-2019-03);中国科学院前沿科学重点研究计划(No.QYZDJ-SSW-DQC013);中国科学院生态环境研究中心生态环境卓越创新项目(No.RCEES-EE1-2019-02)环境模拟与污染控制国家重点联合实验室专项资金(中国科学院生态环境研究中心)(No.18Z02ESPCR),中国科学院青年创新促进会项目
- 刘时光
- 1. 吉林建筑大学市政与环境工程学院, 长春 130118;2. 中国科学院生态环境研究中心饮用水科学与技术重点实验室, 北京 100085
- 王晓玲
- 吉林建筑大学市政与环境工程学院, 长春 130118
- 王元涛
- 吉林建筑大学市政与环境工程学院, 长春 130118
- 王晓敏
- 中国科学院生态环境研究中心饮用水科学与技术重点实验室, 北京 100085
- 宋以萍
- 中国科学院生态环境研究中心饮用水科学与技术重点实验室, 北京 100085
- 蒋莹莹
- 中国科学院生态环境研究中心饮用水科学与技术重点实验室, 北京 100085
- 祝贵兵
- 中国科学院生态环境研究中心饮用水科学与技术重点实验室, 北京 100085
- 摘要:土壤中氧化亚氮(N2O)的释放量占全球N2O释放总量的60%.其中,稻田土壤是N2O最主要的释放源.反硝化过程是稻田土壤N2O生成的主要微生物过程之一.本研究选取广东韶关稻田垂向土壤(0~100 cm)为研究对象,通过乙炔抑制剂法测定了N2O产生潜势和反硝化潜势,并利用针对特异性功能基因的实时荧光定量和高通量测序技术分别分析反硝化功能基因丰度和反硝化微生物群落结构.结果显示:0~10 cm深度的土壤样品N2O产生潜势最高,可达(0.020±0.0035)μg·g-1·h-1.反硝化功能基因中,nirK基因的丰度峰值((1.51±0.0015)×108 copies·g-1)出现在0~10 cm深度,而nosZ和nirS基因的丰度峰值((4.29±0.0015)×107 copies·g-1和(8.86±0.0010)×107 copies·g-1)均出现在10~20 cm深度.稻田垂向土壤中N2O产生潜势和相关的反硝化功能基因(nosZ、nirK和nirS)丰度均随土壤深度的增加而逐渐降低.其中在所有深度的土壤样品中nirK基因的丰度均高于nirS.基于nirK基因的高通量测序结果发现慢生根瘤菌(Bradyrhizobium)的相对丰度最高(44.06%±6.14%,n=6).相关性分析表明,稻田土壤中N2O产生潜势与环境因子(TN、TC和含水率)、反硝化功能基因丰度以及慢生根瘤菌(Bradyrhizobium),罗河杆菌属(Rhodanobacter)和亚硝化螺菌属(Nitrosospira)的相对丰度呈正相关.上述结果表明稻田土壤中环境因子和反硝化功能基因丰度影响了N2O产生潜势的垂向分布.
- Abstract:Nitrous oxide (N2O) emission from soil takes up to 60% among the total N2O emission amount worldwide, where N2O emission from the paddy soil plays a significant role. Denitrification is one of the main microbial processes of N2O production in paddy soil. In this study we analyzed the vertically distributed paddy soil (0~100 cm) from Shaoguan City, Guangdong Province, China, and measured the rate of N2O generation and denitrification by the means of the acetylene inhibition method, and also we analyzed the abundance of denitrification function genes via quantitative Real-time PCR and identified the denitrifying microbial community structure by high-throughput sequencing technology. The results show that soil samples at 0~10 cm demonstrated the highest N2O production potential, which reaches0.020±0.0035 μg·g-1·h-1. For the function genes, the peak abundance of nirK gene ((1.51±0.0015)×108 copies·g-1) appeared in the depth of 0~10 cm, while that of nosZ and nirS genes ((4.29±0.0015)×107 copies·g-1 and (8.86±0.0010)×107 copies·g-1) appeared in the depth of 10~20 cm. The potential N2O production decreased along with the increment of the vertical soil depth. The abundance of nirK gene in all soil samples was higher than that of nirS. Based on the high-throughput sequencing results of nirK gene, Bradyrhizobium had the highest relative abundance (44.06%±6.14%, n =6). The correlation analysis demonstrated that the potential of N2O production in paddy soil was positively correlated with the environmental factors (TN, TC and water content), the abundance of denitrification function genes, and the relative abundance of Bradyrhizobium, Rhodobacter and Nitrosospira. The above results show that the vertical distribution of the potential rate of N2O production could be by both environmental factors and the abundance of genes in paddy soil.