研究报告

  • 吴浩,许潇锋,杨晓玥,谢丽凤.青藏高原及周边区域沙尘气溶胶三维分布和传输特征[J].环境科学学报,2020,40(11):4081-4091

  • 青藏高原及周边区域沙尘气溶胶三维分布和传输特征
  • Three-dimensional distribution and transport characteristics of dust over Tibetan Plateau and surrounding areas
  • 基金项目:国家重点研发计划(No.2016YFA0602003,2018YFC1506502)
  • 作者
  • 单位
  • 吴浩
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044
  • 许潇锋
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044
  • 杨晓玥
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044
  • 谢丽凤
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044
  • 摘要:利用MERRA-2再分析资料和CALIPSO星载激光雷达产品,分析了1980—2017年青藏高原和塔克拉玛干沙漠上空沙尘气溶胶的分布和传输特征.对比了MERRA-2与AERONET及MISR的气溶胶光学厚度(AOD)产品,其相关系数分别为0.809和0.776.基于MERRA-2资料分析表明,研究区域沙尘光学厚度(DAOD)按春、夏、秋、冬季依次递减.塔克拉玛干沙漠和青藏高原地区DAOD均在5月达最高值.青藏高原北部DAOD比南部高0.06~0.10,两地区的DAOD值差异在5月最高.自2000年开始,塔克拉玛干沙漠和印度恒河平原DAOD高值区强度和影响范围显著增大,对青藏高原的沙尘输送增强,印度沙尘对青藏高原的影响显著增加.CALIPSO观测表明,青藏高原上空的沙尘主要来自塔克拉玛干沙漠,传输量春季最大,秋、冬季最小;部分来自印度恒河平原,传输主要发生在夏、秋季.塔克拉玛干沙尘通过柴达木盆地向青藏高原传输,最远可至30°N,传输高度在4~8 km.冬季青藏高原上空的沙尘主要来自柴达木盆地.塔克拉玛干沙漠和青藏高原的最大气溶胶消光系数廓线分别出现在春季和夏季.塔克拉玛干沙漠和青藏高原地区沙尘层厚度多年平均值分别为1.00和0.82 km.2007—2017年,塔克拉玛干沙尘层厚度呈下降趋势,年下降率为0.018 km.青藏高原沙尘层厚度春季最大,冬季次之,夏季最小;沙尘层厚度年变化趋势不显著.
  • Abstract:The distribution and transportation characteristics of dust aerosol over the Tibetan Plateau (TP) and Taklimakan Desert (TD) are analyzed during 1980—2017 using MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) products. The aerosol optical depths (AOD) of MERRA-2 are compared with those of AERONET (Aerosol Robotic Network) in Nam-co site and the corresponding MISR (Multi-angle Imaging Spectro Radiometer) data. The correlation coefficients are 0.809 and 0.776, respectively. The variations of seasonal AOD and dust AOD (DAOD) over the research region are similar, showing the values from high to low are in the order of spring, summer, autumn and winter, respectively. The highest value of DAOD over the TD and the TP both appears in May. The DAOD of the northern TP is 0.06~0.10 higher than that of the southern TP, and the difference of DAOD between northern TP and southern TP shows the highest in May. Since 2000, the strength and area of the high DAOD region over the TD and the Indo-Gangetic Plain (IGP) have increased, which enhanced the transportation of dust from the two source regions. Furthermore, the dust from the IGP shows an increasing impact on the TP. Observations of CALIPSO suggest that the dust over the TP comes mainly from the TD, with the largest dust transport volume in spring and the smallest in autumn and winter, and partly from the IGP, with the transmission occurring mainly in the summer and autumn. The dust moves from the TD to the TP is mainly through the Qaidam Basin in the layer of 4~8 km aloft and could transport as far as 30°N. The dust over the TP in winter mainly comes from frequent sandstorms occurred in the Qaidam Basin. The largest profile of dust extinction coefficient over the TD and the TP appears in spring and summer, respectively. The average dust layer thickness in the TD and TP are 1.00 km and 0.82 km respectively. From 2007 to 2017, the dust layer thickness of the TD decreases significantly, with an annual decline rate of 0.018 km. The dust layer thickness of the TP reaches the first and second maximum in spring and winter, respectively, and the minimum in summer. The annual trend of dust layer thickness over the TP is not significant.

  • 摘要点击次数: 628 全文下载次数: 739