研究报告

  • 陈兵红,靳全锋,柴红玲,郭福涛.浙江省大气PM2.5时空分布及相关因子分析[J].环境科学学报,2021,41(3):817-829

  • 浙江省大气PM2.5时空分布及相关因子分析
  • Spatiotemporal distribution and correlation factors of PM2.5 concentrations in Zhejiang Province
  • 基金项目:国家自然科学基金(No.31770697);2017年浙江省访问工程师项目(No.FG2017240);浙江省教育厅一般项目(No.Y201840513)
  • 作者
  • 单位
  • 陈兵红
  • 丽水职业技术学院, 丽水 323000
  • 靳全锋
  • 1. 丽水职业技术学院, 丽水 323000;2. 福建农林大学林学院, 福州 350002
  • 柴红玲
  • 丽水职业技术学院, 丽水 323000
  • 郭福涛
  • 福建农林大学林学院, 福州 350002
  • 摘要:该研究以浙江省2014-2019年PM2.5浓度数据为研究对象,应用多元线性回归和随机森林方法结合气象、植被、地形、经济、人口和基础设施等因子进行分析.研究结果表明PM2.5浓度时空分布不均匀,时间上季节变化差异显著,总体呈冬季>春季>秋季>夏季分布规律,每年呈下降趋势;空间上呈西北多东南少的分布特征.多元线性回归和随机森林模型显示日最低地表气温(MI-GST)、日最低气压(MI-PRS)、日蒸发量(EVP)、日最小相对湿度(MI-RHU)、月植被覆盖度(FVC)、日降水量(PRE)、日极大风速(MM-WIN)、日平均相对湿度(AV-RHU)、铁路密度(Railway)、日最大风速(MA-WIN)、日照时长(SSD)、海拔(DEM)、日平均风速(AV-WIN)和河流密度(River)等15个因子对PM2.5浓度影响显著;随机森林模型均方根误差(RMSE)、均方绝对百分比误差(MAPE)和变异解释量(R2)分别为0.133、17.83%和0.834,明显优于多元线性回归(0.278、40.48%和0.575),表明随机森林更适合浙江省PM2.5浓度估测,该研究揭示PM2.5时空分布及相关因子分析,为限制空气污染提供有效策略.
  • Abstract:The multiple linear regression and random forest methods, which combine factors including meteorology, vegetation, terrain, economy, population and infrastructure, were applied to analyze the data of PM2.5 concentrations in the Zhejiang region from 2014 to 2019. Results show that the spatial and temporal distribution of PM2.5 concentrations varied, with a significant seasonal order of winter > spring > autumn > summer, and the trend of annual PM2.5 concentrations gradually decreased over the study period. The spatial concentration distribution of PM2.5 in northwest part of the province is much higher in the northeast part of the province. Results of the multiple linear regression and random forest models show that PM2.5 concentrations were significantly impacted by a variety of 15 factors, such as the daily minimum surface temperature (MI-GST), daily minimum pressure (MI-PRS), daily evaporation (EVP), daily minimum relative humidity (MI-RHU), monthly vegetation coverage (FVC), daily precipitation (PRE), daily maximum wind speed (MM-WIN), daily average relative humidity (AV-RHU), railway density (Railway), daily maximum wind speed (MA-WIN), sunshine duration (SSD), digital elevation model (DEM), wind speed (AV-WIN) and river density (River). The root mean square error (RMSE), absolute mean square error (MAPE) and variance interpretation (R2) of the random forest model were 0.133, 17.83% and 0.834, respectively, which were substantially better than the multiple linear regression analysis of 0.278, 40.48% and 0.575. This indicates that the random forest model is better for the estimation of Zhejiang data of PM2.5 concentrations. Overall this study characterized the spatiotemporal distribution and correlation factors for PM2.5 concentrations, which can provide important information on which to base an effective strategy for controlling air pollution.

  • 摘要点击次数: 592 全文下载次数: 685