于文泽,余昊翔,张俊慧,邱斌,刘永泽,曲丹,刘志红,钱晓辉,李鹏飞,郭鹏.“塘+湿地”耦合系统净化再生水补给低C/N河湖水体的效能及机制研究[J].环境科学学报,2021,41(1):263-272
“塘+湿地”耦合系统净化再生水补给低C/N河湖水体的效能及机制研究
- Efficiency and mechanism of purification of low C/N rivers and lakes receiving reclaimed water by an integrated pond-wetland system
- 基金项目:国家水专项课题(No.2017ZX07102-002-003);北京林业大学青年教师科学研究中长期项目(No.2015ZCQ-HJ-01);国家自然科学基金(No.51878049)
- 于文泽
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 余昊翔
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 张俊慧
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 邱斌
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 刘永泽
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 曲丹
- 1. 北京市水体污染源控制技术重点实验室, 北京 100083;2. 北京林业大学环境科学与工程学院, 北京 100083
- 李鹏飞
- 北京市北运河管理委员会昌平区管理段, 北京 102209
- 郭鹏
- 北京市昌平区沙河闸管理处, 北京 102206
- 摘要:构建了针对再生水补给低C/N河湖水体的"释碳塘-水平潜流人工湿地-沉水植物塘"耦合生态净化系统,以北运河上游沙河水库为研究对象,研究了该耦合系统对主要污染物TN、TP和CODCr的净化效能,并采用高通量测序技术解析了各单元微生物群落分布特征.结果表明,耦合生态系统稳定运行后出水中TP、TN和CODCr的浓度分别为(0.07±0.03),(1.41±1.06)和(18.51±6.97)mg·L-1,其中,TP和CODCr可稳定达到《我国地表水环境质量标准》(GB3838—2002)地表IV类水(湖库)标准,TN达标率为73%.10月下旬后出水中TN不达标主要是由于温度降低导致反硝化细菌活性降低以及进水中C/N降低导致.本耦合系统可强化沙河水库中氮素的去除,不仅体现在释碳床的加入可补充湿地反硝化所需碳源,且自身的"夹心结构"可在内部实现缺氧环境,有利于反硝化的发生.加入释碳床前后,释碳塘和水平潜流人工湿地对TN的去除率分别由23.1%±27.3%和38.3%±21.6%提高至25.3%±19.4%和47.4%±15.6%.微生物群落分析结果表明,运行过程中释碳床内部微生物优势菌属由嗜氢菌属和淀粉发酵菌属转变为纤维素降解菌属.耦合系统各单元优势菌属差异较大,其中节杆菌属(Arthrobacter)在3个单元均为优势菌属.
- Abstract:An integrated "carbon release pond-horizontal subsurface flow constructed wetland-submerged plankton pond" (CRP-HSFCW-SPP)" system was developed in order to improve the water quality of low C/N rivers and lakes that receive reclaimed water. The removal efficiency of the major pollutants (i.e., TN, TP and CODCr) was evaluated with Shahe reservoir at the upstream of the North Canal, Beijing. The microbial community in each unit was then analyzed. The effluent TP, TN and CODCr of the integrated system were (0.07±0.03), (1.41±1.06)and (18.51±6.97) mg·L-1, respectively. TP and CODCr stably complied with the level IV standard of the Surface Water Environmental Quality Standards (GB 3838—2002) in China (for lakes and reservoirs), while the percentage of compliance for effluent TN was 73% due to the decreased activity of denitrifying bacteria with decreases in temperature and influent C/N from late October. The enhanced nitrogen removal by the CRP-HSFCW-SPP can be explained by the supplementary carbon from the carbon release bed (CRB) and the sandwich structure of CRB with anoxic environments, both of which favored denitrification. By incorporating CRB, the TN removal efficiency in the CRP and HSFCW increased from 23.1%±27.3% and 38.3%±21.6% to 25.3%±19.4% and 47.4%±15.6%, respectively. The dominant bacteria in the CRB shifted from denitrification-related bacteria (e.g., Hydrogenophaga) and starch fermentation bacteria (e.g., Paludibacter) to cellulose-degrading bacteria (e.g.,Clostridium and Prevotella). The dominant genera in the units of CRP-HSFCW-SPP differed largely while Arthrobacter was found to dominate in all three units.