研究论文
周广强,余钟奇,瞿元昊.ECMWF气象场驱动长三角PM2.5预报与最优集成[J].环境科学学报,2021,41(5):1656-1664
ECMWF气象场驱动长三角PM2.5预报与最优集成
- Forecast of PM2.5 over Yangtze River Delta by ECMWF data driving and optimal integration
- 基金项目:国家重点研发计划(No.2016YFC0201900);上海市科技计划项目(No.20dz1204000)
- 周广强
- 长三角环境气象预报预警中心, 上海 200030
- 余钟奇
- 长三角环境气象预报预警中心, 上海 200030
- 瞿元昊
- 长三角环境气象预报预警中心, 上海 200030
- 摘要:采用华东区域大气环境数值预报业务系统(RAEMS-GFS)的整体框架和欧洲中期天气预报中心(ECMWF)高分辨率数值天气预报数据,建立了ECMWF气象场驱动的区域空气质量数值预报系统(RAEMS-EC).评估结果显示:RAEMS-EC对2019年秋冬季长三角城市PM2.5浓度和污染程度具有良好的预报准确性,其性能与RAEMS-GFS具有高度可比性的同时也存在一定的差异,数值上则有较明显的系统性偏高.RAEMS-EC与RAEMS-GFS双模式最优集成预报(OCF)可以大幅提升预报效果,长三角各城市PM2.5浓度总体预报效果指标提升12%~83%,各指标在80%以上城市为正效果,PM2.5污染预报TS评分也得到明显提升(14%),OCF基本消除了数值预报系统性偏高的不足.
- Abstract:In this paper, the Regional Atmospheric Environmental Modeling System for eastern China driven by ECMWF high resolution numerical prediction data (RAEMS-EC) was established based on the framework of RAEMS driven by GFS data (RAEMS-GFS). The evaluation results showed that RAEMS-EC had high prediction accuracy for both PM2.5 concentration and pollution degree over the Yangtze River Delta region in autumn and winter of 2019. The performance of RAEMS-EC indicated some difference from that of RAEMS-GFS although they had high similarity. Moreover, RAEMS-EC obviously overestimated the concentration of PM2.5. The optimal consensus forecast (OCF) was applied to assemble RAEMS-EC and RAEMS-GFS and it significantly improved the forecast capability: ① the forecast capability indexes for city PM2.5 concentration were improved by 12%~83%, which gave positive effect for each index over 80% cities;and ②the TS score for PM2.5 pollution degree improved by 14%. The application of OCF basically eliminated the overestimation of RAEMS-EC.