特别选题:水质学技术前沿
张丽丽,庄媛,胡春,石宝友.多相催化技术的固液微界面调控原理及应用进展[J].环境科学学报,2020,40(12):4225-4233
多相催化技术的固液微界面调控原理及应用进展
- Control mechanism of solid-liquid micro-interface and application progress for heterogeneous catalysis technology
- 基金项目:国家重点研发项目(No.2016YFA0203200);国家自然科学基金项目(No.51538013,51838005)
- 张丽丽
- 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085
- 庄媛
- 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085
- 胡春
- 1. 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085;2. 广州大学大湾区环境研究院, 珠江三角洲水质安全与保护教育部重点实验室, 广州 510006
- 石宝友
- 中国科学院生态环境研究中心, 中国科学院饮用水科学与技术重点实验室, 北京 100085
- 摘要:多相催化氧化是一种很有前景的水深度处理技术,实际水环境中微量难降解有机污染物的去除通常受到水中共存物质如天然有机物(NOM)的影响.因此,在多相催化体系中,基于污染物与氧化媒介在催化剂表面的作用及转化过程调控催化剂的表面性质,对于复杂环境中污染物的高效靶向去除至关重要.本文主要综述了以过氧化氢、臭氧和光为媒介的多相催化氧化技术的固液微界面调控原理,以及基于固液微界面调控的水处理应用进展.重点阐述了催化剂表面性质对氧化媒介和目标污染物在表面分解和转化的影响,以及不同类型有机污染物在催化剂表面的作用原理.在此基础上,我们提出通过不同的手段极化催化剂表面,使表面电子分布不均匀,形成氧化位点和还原位点,使目标污染物失电子氧化同时活化表面吸附氧化媒介形成更多吸附态·OH,是促进复杂水环境中目标污染物高效去除的关键途径.
- Abstract:Heterogeneous catalytic oxidation is a promising water treatment technology. The removal of trace refractory organic pollutants in the actual water environment is usually affected by the coexisting substances in water, such as natural organic matter (NOM). Therefore, in the heterogeneous catalytic system, the regulation of the catalyst surface properties based on the interaction and transformation process of pollutants and oxidizing media on the catalyst surface is of great importance for efficient and targeted removal of pollutants in complex environments. This paper summarized the solid-liquid micro-interface regulation principles of the heterogeneous catalytic oxidation technology with hydrogen peroxide, ozone and light as the media. The application progress of water treatment based on solid-liquid micro-interface control is further reviewed. We emphasized the effect of surface properties on the decomposition and transformation of oxidizing media and target pollutants, and the action mechanism of different types of organic pollutants on the catalyst surface. On this basis, we put forward surface polarization by various methods to induce uneven distribution of surface electrons and the formation of redox sites, resulting in the electron-loss oxidation of pollutants and the formation of surface adsorbed ·OH from the reduction of active media, which is a key pathway to promote efficient removal of target pollutants in complex water environment.