王瑶瑶,沈小雄,祝雨倩,刘京都,熊鹰,余关龙,杜春艳.Fe-Cu-C三元微电解材料的制备及去除氧氟沙星的性能研究[J].环境科学学报,2021,41(11):4528-4537
Fe-Cu-C三元微电解材料的制备及去除氧氟沙星的性能研究
- The preparation of Fe-Cu-C ternary micro-electrolysis material for ofloxacin removal
- 基金项目:湖南省教育厅科学研究项目(No.18B127,19A032);国家自然科学基金项目(No.51109016);长沙理工大学专业学位研究生实践创新与创业能力提升项目(No.SJCX202039)
- 王瑶瑶
- 长沙理工大学水利工程学院, 长沙 410114
- 沈小雄
- 1. 长沙理工大学水利工程学院, 长沙 410114;2. 洞庭湖水环境治理与生态修复湖南省重点实验室, 湖南省环境保护河湖疏浚污染控制工程技术中心, 长沙 410114
- 祝雨倩
- 长沙理工大学水利工程学院, 长沙 410114
- 刘京都
- 长沙理工大学水利工程学院, 长沙 410114
- 熊鹰
- 1. 长沙理工大学水利工程学院, 长沙 410114;2. 洞庭湖水环境治理与生态修复湖南省重点实验室, 湖南省环境保护河湖疏浚污染控制工程技术中心, 长沙 410114
- 余关龙
- 1. 长沙理工大学水利工程学院, 长沙 410114;2. 洞庭湖水环境治理与生态修复湖南省重点实验室, 湖南省环境保护河湖疏浚污染控制工程技术中心, 长沙 410114
- 杜春艳
- 1. 长沙理工大学水利工程学院, 长沙 410114;2. 洞庭湖水环境治理与生态修复湖南省重点实验室, 湖南省环境保护河湖疏浚污染控制工程技术中心, 长沙 410114
- 摘要:为进一步提高Fe-C二元微电解材料去除难降解抗生素氧氟沙星(OFL)的性能,构建了Fe-Cu-C三元微电解体系.主要探究了Fe-Cu-C三元微电解材料的最佳制备及运行条件,通过添加淬灭剂鉴别微电解反应过程中产生的主要活性物质,采用SEM、XRD、EDS、FTIR、UV-Vis对絮体、反应前后的微电解材料及OFL废水进行表征.结果表明:Fe-Cu-C三元微电解材料的最佳制备条件为:Fe/C比为1:1、膨润土比例为35%、碳酸氢铵比例为7%、煅烧温度为900℃、CuO添加比例为4%.该条件下,Fe-Cu-C三元微电解体系对OFL的去除率较Fe-C二元微电解体系提高了15.28%.在OFL初始浓度为20 mg·L-1、pH=6、投加量为20 g·L-1、曝气量为5 L·min-1时对OFL的降解效果最好,达到了88.06%,较Fe-C二元微电解体系提高了10.22%.微电解材料去除OFL主要依靠活性物质的降解作用,而Fe-Cu-C三元微电解体系能够增加电子转移途径,从而加快电子转移速度,产生更多的活性物质,具有更强的OFL断键能力.以上结果表明,Fe-Cu-C三元微电解体系具有更显著的OFL降解效果.
- Abstract:To further improve the performance of Fe-C binary micro-electrolysis material for removing refractory antibiotic ofloxacin (OFL), a ternary micro-electrolysis system of Fe-Cu-C was constructed. The optimum preparation conditions for Fe-Cu-C ternary micro-electrolysis materials were investigated. The main active substances produced in the process of micro-electrolysis were identified by adding quencher. SEM, XRD, EDS, FTIR and UV-Vis were used to characterize the flocs, micro-electrolysis materials before and after reaction and OFL wastewater. The results showed that the best preparation conditions of Fe-Cu-C ternary micro-electrolysis materials were as follows:Fe/C ratio, bentonite ratio, ammonium bicarbonate ratio, calcination temperature and, CuO addition ratio were 1:1, 35%, 7%, 900℃ and 4%, respectively. Under these conditions, the removal rate of OFL by Fe-Cu-C ternary micro-electrolysis system was 15.28% higher than that by Fe-C system. When the initial concentration of OFL, the pH, the dosage and the aeration rate were 20 mg·L-1, 6.0, 20 g·L-1and 5 L·min-1, respectively, the degradation performance of OFL reached the highest, at 88.06%, which was 10.22% higher than that of Fe-C binary micro-electrolysis system. The ternary micro-electrolysis system of Fe-Cu-C can produce more active substances which the degradation of OFL mainly depended on, through increasing the electron transfer pathway and accelerating the speed of electron transfer. And thus the ternary micro-electrolysis system showed stronger ability of OFL bond breaking. The above results indicate that the ternary micro-electrolysis system of Fe-Cu-C has a high efficiency on the degradation of OFL.