研究报告
马传军,金丹楠,郑文卓,随然,景浩川,路莹.g-C3N4/WO3光阳极的除污产电性能研究[J].环境科学学报,2022,42(6):63-71
g-C3N4/WO3光阳极的除污产电性能研究
- Study on the decontamination and electricity generation of g-C3N4/WO3 photoanode
- 基金项目:国家自然科学基金(No.51778117)
- 马传军
- 中国石油化工股份有限公司大连石油化工研究院环保所,大连 116045
- 金丹楠
- 东北师范大学环境学院,吉林省水污染控制与资源化工程实验室,长春 130117
- 郑文卓
- 东北师范大学环境学院,吉林省水污染控制与资源化工程实验室,长春 130117
- 随然
- 东北师范大学环境学院,吉林省水污染控制与资源化工程实验室,长春 130117
- 景浩川
- 东北师范大学环境学院,吉林省水污染控制与资源化工程实验室,长春 130117
- 路莹
- 东北师范大学环境学院,吉林省水污染控制与资源化工程实验室,长春 130117
- 摘要:光催化燃料电池(PFC)以太阳光为能源,利用半导体激发产生的活性物种降解污染物,同时将催化过程产生的电子导出获得电能,可有效应对环境污染和能源危机.本文采用热蒸汽冷凝和旋转涂膜法制备了以网状氮化碳(g-C3N4)为基底,其上负载WO3纳米片的电极材料. 在双腔室H型电解池中,以制备的g-C3N4/WO3为光阳极、Pt片为阴极,盐酸四环素(TCH)和Cr(VI)分别为阳极室和阴极室的目标污染物,构建g-C3N4/WO3-Pt PFC体系.光照240 min后,TCH和Cr(VI)的去除率分别为79.1%和91.3%,电池的最大输出功率密度达到6.70 μW·cm-2.高活性来源于3个方面: ①g-C3N4和WO3两种窄带半导体的同时激发,光能利用率增加;②g-C3N4/WO3间的Z-scheme异质结在提高催化剂内光生载流子分离效率的同时,最大限度地保留了g-C3N4的高导带和WO3的低价带优势,这对于PFC实现高效电子导出和污染物降解至关重要; ③g-C3N4的网状结构和WO3的纳米片结构有利于催化剂与光子、污染物的接触.
- Abstract:Photocatalytic fuel cell (PFC) which exploits sunlight as energy source, could realize efficient pollutants degradation by utilizing the semiconductor excitation and obtain electric energy by deriving the electrons originated from the catalytic process, solving the environmental problems and energy crisis. In this paper, the hot steam condensation and spin coating method were used to prepare electrode materials based on net-like carbon nitride (g-C3N4) on which WO3 nanosheets were loaded. In a double-chamber H-type electrolytic cell, the g-C3N4/WO3-Pt PFC system was constructed by utilizing the prepared g-C3N4/WO3 as photoanode, Pt sheet as cathode, as well as using tetracycline hydrochloride (TCH) and Cr(VI) as the target pollutants in anode and cathode compartments, respectively. After 240 min irradiation, the removal rate of TCH and Cr(VI) are 79.1% and 91.3%, respectively, and the maximum power density is 6.70 μW·cm-2. The high reactivity come from: ①both the narrow band gap semiconductors g-C3N4 and WO3 are excited and thus increase the light utilization efficiency; ②the Z-scheme heterojunction between g-C3N4/WO3 not only improves the separation efficiency of photogenerated carriers in catalyst, but also maintains the high conduction band of g-C3N4 and the low valence band of WO3 to the greatest extent, which is essential for PFC to achieve efficient electron export and pollutant degradation; ③the network structure of g-C3N4 and the nanosheet structure of WO3 facilitate the contacting of catalyst with photons and pollutants.