研究报告

  • 杜晨,张丽娟,杨艺萍,赵余峰,刘栋.哈尔滨大气降水氢氧稳定同位素特征及水汽来源[J].环境科学学报,2022,42(7):94-105

  • 哈尔滨大气降水氢氧稳定同位素特征及水汽来源
  • Stable isotopic compositions of precipitation and water vapor origins in Harbin
  • 基金项目:国家自然科学基金(No.41771067);黑龙江省自然基金重点项目(No. ZD2020D002);哈尔滨师范大学研究生创新项目(No.HSDSSCX2019-07)
  • 作者
  • 单位
  • 杜晨
  • 哈尔滨师范大学寒区监测与信息服务重点实验室,哈尔滨150025
  • 张丽娟
  • 哈尔滨师范大学寒区监测与信息服务重点实验室,哈尔滨150025
  • 杨艺萍
  • 哈尔滨师范大学寒区监测与信息服务重点实验室,哈尔滨150025
  • 赵余峰
  • 哈尔滨师范大学寒区监测与信息服务重点实验室,哈尔滨150025
  • 刘栋
  • 哈尔滨师范大学寒区监测与信息服务重点实验室,哈尔滨150025;黑龙江省气候中心,哈尔滨150025
  • 摘要:大气降水同位素的研究对于深入理解地区水循环特征具有重要意义.而基于降水样品实测数据在高纬度寒冷地区的研究尚不多见.本文基于2020年7月—2021年6月一个水文年周期内68个大气降水样品,测定了降水中的δD和δ18O,分析了哈尔滨降水稳定同位素特征及水汽来源.结果表明:①哈尔滨大气降水中δD和δ18O平均值分别为-89.33‰和-12.46‰,具有明显的冬低夏高的特点,年内变化范围均较大,分别为-275.50‰~-3.67‰和-35.68‰~-1.10‰,较全球平均值低67.33‰和8.46‰,较中国平均值低39.33‰和4.46‰.②哈尔滨大气降水线方程为:δD=7.66δ18O+6.29(R2=0.98),斜率和截距与全球的8和10和中国大气降水线的7.9和8.2接近,与东北地区大气降水线的7.20和-2.39相比,斜率差异较小而截距差异明显.③氢氧同位素与气温之间的拟合方程为:δD=0.34T-15.40(R2=0.41, p<0.01),δ18O=2.52T-111.18 (R2=0.38, p<0.01),说明哈尔滨降水同位素具有极显著的温度效应.④过量氘(d-excess)的变化范围为-7.63‰~22.98‰,根据降水量计算得到的加权平均值为10.47‰,说明哈尔滨降水主要以陆地气团为主导;d与气温T之间的拟合关系为:d=-0.19T+11.99(R2=0.13, p<0.01) ,与相对湿度RH之间的拟合关系为:d=0.13RH+0.14 (R2=0.07, p<0.05);⑤哈尔滨大气降水的水汽来源从全年的气团后向模拟结果来看是由大西洋水汽,北冰洋的水汽,太平洋水汽以及局地蒸发四部分组成,并且来自局地蒸发的陆地气团的比例始终占1/2以上.
  • Abstract:The study of isotopic compositions of precipitation is of great significance to deeply understand the characteristics of regional water cycle. However, there are few studies based on the measured data of precipitation samples in high latitude and cold areas. Based on 68 precipitation samples in a year from July 2020 to June 2021, the content of δD and δ18O, the stable isotope characteristics and water vapor origins of precipitation in Harbin are analyzed. The results show that: ①The average values of δD and δ18O are -89.33‰ and -12.46‰ respectively. There are obvious characteristics of low δ values in winter and high in summer. Their ranges in Harbin are relatively large, -275.50‰~-3.67‰ and -35.68‰~-1.10‰ respectively. Their average values are 67.33‰ and 8.46‰ lower than that of globe and 39.33‰ and 4.46‰ of China.② The local meteoric water line is established as δD=7.66δ18O+6.29, where the slope and intercept are close to that of global values (8 and 10) and that in China (7.9 and 8.2). Compared with that of meteoric water line in Northeast China (7.20 and -2.39), the slope is slightly lower but the difference in intercept is obvious.③ The linear fitting relationships between hydrogen and oxygen isotopes and T are δD=0.34T-15.40 (R2=0.41, p<0.01) andδ18O=2.52T-111.18 (R2=0.38, p<0.01), showing that the temperature effect is significant. ④The d-excess varies from -7.63‰ to 22.98‰ with an average value of 10.33‰ according to amount of precipitation, which shows that it is dominated by land air mass. The linear fitting relationships between d and T and d and RH are d=-0.19T+11.99 (R2=0.13, p<0.01), d=0.13RH+0.14 (R2=0.07, p<0.05). ⑤ The water vapor origins in Harbin are composed of four parts throughout the year: Atlantic water vapor, Arctic water vapor, Pacific water vapor, and local evaporation. Local evaporation always accounts for more than 1/2 of land air mass in Harbin.

  • 摘要点击次数: 172 全文下载次数: 220