研究报告
马晓明,信帅帅,张春蕾,马丙瑞,刘文婕,高孟春.g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯[J].环境科学学报,2022,42(8):166-178
g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯
- Preparation of g-C3N4/TiO2 nanotube arrays photoanode for photoelectrocatalytic degradation of o-chloronitrobenzene
- 基金项目:国家自然科学基金(No.21878280)
- 马晓明
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 信帅帅
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 张春蕾
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 马丙瑞
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 刘文婕
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 高孟春
- 中国海洋大学海洋环境与生态教育部重点实验室,青岛 266100;中国海洋大学环境科学与工程学院,青岛 266100
- 摘要:采用阳极氧化-涂覆煅烧法成功制备了g-C3N4/TiO2纳米管阵列(g-C3N4/TNAs)光阳极,并通过扫描电镜、X射线衍射仪、X射线光电子能谱仪、紫外可见漫反射光谱仪、光致发光光谱仪和电化学工作站等表征分析了g-C3N4/TNAs光阳极的形貌、晶形结构、光学特性和光电化学性能.表征结果证实,g-C3N4的引入通过缩小禁带宽度扩宽了TNAs的可见光响应范围,提高了光电流密度和光生电子寿命,促进了光生电子和空穴的分离.g-C3N4/TNAs光阳极在光电催化体系内对邻氯硝基苯(o-CNB)的降解效率高于其在光催化和电催化体系中对o-CNB的降解效率,且具有良好的稳定性和可重复性.活性物质捕获实验、电子自旋共振测试和能带结构分析表明,g-C3N4/TNAs光阳极中TNAs和g-C3N4之间存在Z型异质结相互作用机制.在光电催化体系内降解o-CNB的主要活性物质是?O2-、?OH和光生空穴,而光生电子是次要的活性物质.
- Abstract:The g-C3N4/TiO2 nanotube arrays (g-C3N4/TNAs) photoanode was successfully prepared by the anodic oxidation and coating calcination method. The morphology, crystal structure, optical property and photoelectrochemical performance of g-C3N4/TNAs photoanode were analyzed through scanning electron microscopy, X-ray diffractometer, X-ray photoelectron spectrometer, ultraviolet visible diffuse reflectance spectrometer, photoluminescence spectrometer and electrochemical workstation. The characterization results proved that the introduction of g-C3N4 broadened the visible-light response range of TNAs by narrowing the band gap width and increased the photocurrent density and photogenerated electron lifetime, which could promote the separation of photogenerated electrons and holes. The o-chloronitrobenzene (o-CNB) degradation efficiency by g-C3N4/TNAs photoanode in the photoelectrocatalytic system was higher than that in the photocatalytic and electrocatalytic systems. The g-C3N4/TNAs photoanode has good stability and repeatability. The active species capture experiment, electron spin resonance test and energy band structure analysis demonstrated the existence of Z-scheme heterojunction interaction mechanism between TNAs and g-C3N4 in the g-C3N4/TNAs photoanode. The main active species for o-CNB photoelectrocatalytic degradation were ?O2-, ?OH and photogenerated holes, while the photogenerated electrons were auxiliary active species.