研究报告
辛思奇,赵通林,李学伟,乔梦,赵旭.机械活化蛇纹石吸附除磷性能及机理研究[J].环境科学学报,2022,42(8):208-215
机械活化蛇纹石吸附除磷性能及机理研究
- Investigation on adsorption capacity and mechanism of phosphorus by mechanochemically activated serpentine
- 基金项目:贵州省科技计划项目(No.黔科合支撑[2021]一般472,黔科合支撑[2019]2848号)
- 辛思奇
- 辽宁科技大学,矿业工程学院,鞍山 114051;中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
- 赵通林
- 辽宁科技大学,矿业工程学院,鞍山 114051
- 李学伟
- 中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085;中国科学院赣江创新研究院,赣州 341000
- 乔梦
- 中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
- 赵旭
- 中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
- 摘要:为实现废水中磷的绿色高效去除,采用机械活化法制备活性蛇纹石吸附材料,探讨了该材料对废水中30 mg·L-1正磷酸盐的吸附性能、 关键影响因素及吸附去除机理.结果表明,活性蛇纹石对磷的理论最大吸附量(以P计)为126.58 mg·g-1,当初始pH为7.0、温度为20 ℃、投加量为0.5 g·L-1、吸附时间为240 min时,材料对磷的去除率为89.73%.磷的去除率随活化时间、吸附时间和投加量的增加而增大,随pH和温度的增加而降低.利用激光粒度仪、XRD、FTIR和SEM等现代分析测试手段研究了活性蛇纹石对磷的吸附机理.结果表明,机械活化致使蛇纹石颗粒的中值粒径从41.32 μm迅速降低到12.00 μm,之后粒径不再发生明显变化,进一步的机械力作用使蛇纹石晶体结构受到破坏,导致Mg—OH 键能减弱,增强了颗粒表面的Mg吸附位点的活性,并使颗粒表面呈碱性,最终使磷能够以磷酸镁(Mg3(PO4)2·22H2O)的形式固定在材料表面.等温吸附和吸附动力学试验表明,该吸附过程符合Langmuir等温吸附模型和准二级动力学模型,说明磷在活性蛇纹石表面以单分子层吸附、化学吸附为主.
- Abstract:In order to achieve efficient removal of phosphorus with green method from wastewater, activated serpentine adsorbent was prepared by mechanical activation method. The adsorption performance, key influencing factors, and adsorption removal mechanism of orthophosphate with the initial concentration of 30 mg·L-1 from wastewater were investigated. The results showed that the theoretical maximum adsorption capacity of phosphorus (measured as P) was 126.58 mg·g-1, and the removal efficiency of phosphorus reached 89.73% after 240 min with the initial pH of 7.0, the temperature of 20 ℃, and the adsorbent dosage of 0.5 g·L-1. The phosphorus removal efficiency was in direct proportion to activation time, adsorption time and dosage, and decreased with the increase of pH and temperature. The adsorption mechanism of active serpentine to phosphorus was studied by laser particle size analyzer, XRD, FTIR and SEM. The results showed that the median particle size of serpentine decreased rapidly from 41.32 μm to 12.00 μm due to mechanical activation, after which the particle size did not change significantly. Further mechanical forces resulting in the destruction of the serpentine crystal structure, weaken of the Mg—OH bond energy, enhancement of the activity of Mg adsorption sites on the particle surface, alkaline of the particle surface, and finally enable phosphorus fixed on the surface of the adsorbent in the form of magnesium phosphate (Mg3(PO4)2·22H2O). Isothermal adsorption and adsorption kinetics tests confirmed that the adsorption process was Langmuir isotherm adsorption model and quasi-second-order kinetics model, indicating that the adsorption of phosphorus by active serpentine was mainly monomolecular adsorption and chemisorption.