研究报告

  • 孙立博,王晓玲,王旭敏,姜丽萍,蒋佳益,王晓敏,祝贵兵.淮北平原典型农田土壤N2O产生途径及相关功能基因丰度研究[J].环境科学学报,2022,42(10):441-451

  • 淮北平原典型农田土壤N2O产生途径及相关功能基因丰度研究
  • N2O production pathways and related functional gene abundance in typical agricultural soils of the Huaibei Plain
  • 基金项目:国家自然科学基金(No.91851204);中国科学院生态环境研究中心生态环境卓越创新项目(No.RCEES-EEI-2019-02);中国科学院青年创新促进会项目
  • 作者
  • 单位
  • 孙立博
  • 吉林建筑大学市政与环境工程学院,长春 130118;中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 王晓玲
  • 吉林建筑大学市政与环境工程学院,长春 130118
  • 王旭敏
  • 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 姜丽萍
  • 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 蒋佳益
  • 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 王晓敏
  • 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 祝贵兵
  • 中国科学院生态环境研究中心饮用水科学与技术重点实验室,北京 100085
  • 摘要:温室气体氧化亚氮(N2O)已成为全球关注的焦点,全球约60%的人为N2O排放来自农业土壤.虽然已知微生物硝化和反硝化是土壤N2O产生的主要过程,但N2O产生的关键生物学机制以及其调控环境变量之间的相互作用仍然难以预测.本研究选取安徽省亳州市冬、夏两季 农田垂向土壤(0~200 cm)为研究对象,通过乙炔抑制法、15N-18O同位素示踪技术分别测定了N2O产生潜势及产生途径,并利用宏基因组测序技术分析不同N2O产生途径中功能基因的丰度变化以解析农田土壤N2O产生的微生物机理.结果显示,在空间尺度上,表层土壤(0~20 cm)是N2O产生热区,其N2O产生潜势最高,为(0.364±0.048) ng·g-1·h-1.硝化和反硝化潜势均在表层土壤达到最高.在时间尺度上,冬季(15 ℃)是N2O产生热时,冬季样品N2O产生潜势显著高于夏季样品,分别为(0.198±0.007)和(0.057±0.009) ng·g-1·h-1.总体而言,硝化过程是农田土壤N2O产生的主要来源,其中,硝化细菌反硝化过程(ND)对N2O产生的贡献率最高,为52%,而硝化细菌硝化过程(NN)和硝化反应偶联的反硝化过程(NCD)的贡献率分别为24%和0.统计分析表明,农田土壤N2O产生、硝化及反硝化潜势与理化性质(MC、pH、TN)和功能基因相对丰度(haonirK、norB)存在显著相关性.本研究揭示了农田土壤中N2O的产生机理及关键影响因素,并强调了冬季农田土壤中N2O的产生不容忽视,这些结果对准确评估我国农业温室气体排放具有重要意义.
  • Abstract:Nitrous oxide(N2O)as a greenhouse gas has become the focus of global concern,and about 60% anthropogenic N2O emissions come from agricultural soils. Despite microbial nitrification and denitrification are the main processes involved in soil N2O production,the key biological mechanisms of N2O production and their regulatory environmental factors remain difficult to predict. This study was conducted to analyze the microbial mechanism of N2O production in the vertically distributed agricultural soils during winter and summer in Bozhou,Anhui Province,China. The potential and pathways of N2O production were determined by acetylene inhibition and 15N-18O dual isotope tracing techniques. Furthermore,the abundance of functional genes in different N2O production pathways was investigated by metagenomic sequencing technology. At the spatial scale,the results indicated that the surface soil(0~20 cm)was the hotspot of N2O production with the highest N2O production potential of (0.364±0.048) ng·g-1·h-1. Both the nitrification and denitrification potentials reached the highest in the surface soil. At the time scale,winter(15 ℃)was the hotspot of N2O production. The potential of winter N2O production((0.198±0.007) ng·g-1·h-1)was significantly higher than that in summer((0.057±0.009) ng·g-1·h-1). Generally,nitrification was the main process of N2O production in agricultural soils. The contribution of nitrifier denitrification to N2O production was 52%,and the contribution of nitrifier nitrification(NN)and nitrification coupled denitrification processes(NCD)were 24% and 0,respectively. The correlation analysis showed that N2O production, nitrification and denitrification potential of agricultural soils were significantly correlated with physicochemical properties(MC,pH,TN)and relative abundance of functional genes(haonirK,norB). This study reveals the mechanism and influencing factors of N2O production in agricultural soils,and emphasizes that N2O production in winter cannnot be ignored. This study has important implications for the accurate assessment of agricultural greenhouse gas emissions in China.

  • 摘要点击次数: 205 全文下载次数: 285