研究报告

  • 黄肖星,张珂,吴礼光,王挺.基于CO2气体分离的固载离子液体@介孔二氧化硅混合基质膜[J].环境科学学报,2022,42(11):406-415

  • 基于CO2气体分离的固载离子液体@介孔二氧化硅混合基质膜
  • Mixed matrix membrane containing ionic liquid immobilized by mesoporous silica for selective CO2 separation
  • 基金项目:国家自然科学基金资助项目(No. 22078291); 浙江省自然科学基金资助项目(No. LY19B060004)
  • 作者
  • 单位
  • 黄肖星
  • 浙江工商大学, 环境科学与工程学院,杭州 310012
  • 张珂
  • 浙江工商大学, 环境科学与工程学院,杭州 310012
  • 吴礼光
  • 浙江工商大学, 环境科学与工程学院,杭州 310012
  • 王挺
  • 浙江工商大学, 环境科学与工程学院,杭州 310012
  • 摘要:为提升混合基质膜对CO2的气体分离性能,将具有良好CO2吸附特性能的离子液体首先固载于介孔SiO2中,而后将该复合材料掺杂到 聚酰亚胺高分子中构建高效分离CO2的混合基质膜.研究结果表明,固载离子液体主要进入介孔SiO2的孔道内部,但当绝大部分介孔孔道被离子液体填满后,过多离子液体在SiO2颗粒外围形成连接.由于离子液体对CO2优异的吸附性能,其固载后介孔SiO2对CO2的吸附性能得到的显著提升,这进一步增强了固载离子液体的介孔SiO2掺杂混合基质膜对CO2气体的捕获,随着混合基质膜中离子液体固载量增加其CO2渗透性能也明显提升.但当固载离子液体加入量达到1.0 g时,固载离子液体的介孔SiO2在PI高分子中出现了团聚,其CO2渗透性能反而下降.IL@C-SiO2-2/PI膜的渗透性能和对CO2的渗透选择性都达到最佳,其对CO2/N2理想选择性可达到30.
  • Abstract:To enhance the CO2 separation performance of mixed matrix membrane (MMM), the ionic liquid (IL) with good CO2 adsorption properties was first immobilized in mesoporous SiO2, and then the composite material was doped into polyimide polymer to construct a MMM for efficient CO2 separation. The results showed that the immobilized IL mainly entered the inside pores of mesoporous SiO2. When most of the mesoporous pores were filled with ILs, excess ILs would form connectors around the mesoporous SiO2. Due to the excellent adsorption performance of ILs for CO2, the adsorption for CO2 of mesoporous SiO2 was significantly improved after IL immobilization, which further enhanced the CO2 capture by the resulting MMMs incorporating IL@SiO2-doped. With the increase of IL addition in the MMMs, the CO2 permeation performance of the resulting MMMs was also improved. However, when the added amount of IL reached 1.0 g, the IL immobilized mesoporous SiO2 agglomerated in the PI polymer, thus decreasing the CO2 permeability of the resulting MMMs. The permeation performance and ideal selectivity of IL@C-SiO2-2/PI membrane reached the best value, and its ideal selectivity for CO2/N2 could reach 30.

  • 摘要点击次数: 217 全文下载次数: 248