研究报告
赵丹,王文婷,陈诗雨,陈皓若,张健,徐赛赛,陈立婧.金泽水库浮游植物功能群时空变化特征[J].环境科学学报,2022,42(11):445-454
金泽水库浮游植物功能群时空变化特征
- Temporal and spatial variation of phytoplankton functional groups in Jinze Reservoir
- 基金项目:国家重点研发计划项目(No. 2020YFD0900504, 2019YFD0900605)
- 赵丹
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 王文婷
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 陈诗雨
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 陈皓若
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 张健
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 徐赛赛
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306
- 陈立婧
- 上海海洋大学水产动物遗传育种中心上海市协同创新中心,上海 201306;上海海洋大学海洋动物系统分类与进化上海高校重点实验室,上海 201306;上海农林职业技术学院,上海 201699
- 摘要:于2018年7月—2019年6月对金泽水库浮游植物进行调查,研究浮游植物FG功能群时空变化及其与环境因子的关系,探讨进、出水口浮游植物群落特征异同的原因.调查期间,该水域整体处于轻到中度富营养化水平,库内共检测出浮游植物8门139种,主要由蓝、绿、硅藻门种类构成,共25组功能群,优势功能群有M、H1、LO、K4组,喜好富营养水体环境,所属种类主要为蓝藻门,以微囊藻属为代表的M功能群为绝对优势功能群;进、出水口分别有7门87种、7门102种,分属于23组、20组功能群,优势功能群分别有5组、9组,两个点位种属相似度超过0.6,达中等相似,共有优势功能群为M、H1、LO、K 4组,主要为蓝藻门种类,M功能群为绝对优势功能群.库内生物密度月变化为280.1162×104 ~1750.7050×104 cells·L-1,出水口生物密度年均值比进水口降低29.78%,但差异不显著,蓝藻的生物密度决定着库内藻类生物密度月变化及进、出水口藻类生物密度年均值的差异.冗余分析结果显示,环境因子对库内浮游植物解释率为53.59%,占绝对优势的M 功能群,受总氮影响较大且正相关.研究结果表明,库内一系列净化措施有一定作用,但受来水影响,该水库仍有水华暴发的风险,需调整库内净化策略,加强净化水质,以保障饮用水安全.
- Abstract:The phytoplankton community in Jinze Reservoir was investigated from July 2018 to June 2019 to study the temporal and spatial changes of the phytoplankton FG functional group and their relationship with environmental factors and explore the reasons for the similarities and differences in the characteristics of phytoplankton communities at the inlet and outlet. During the investigation period, the water body was at mild to moderate eutrophication. A total of 139 phytoplankton from 8 phyla were detected in the reservoir, mainly composed of species of Cyanophyta, Chlorophyta and Bacillariophyta, and a total of 25 functional groups. The dominant functional groups in the reservoir were M, H1, LO, and K. All the four groups prefer eutrophic water environments, and the main phylum is Cyanophyta. The M functional group, mainly constituted by Microcystis, is the dominant functional group. There were 7 phyla and 87 species in the inlet water, 7 phyla and 102 species in the outlet water. These species belong to 23 groups and 20 functional groups. There are five groups and nine groups of dominant function groups in the inlet and outlet waters, respectively. The species similarity of the inlet and outlet waters is higher than 0.6, which is moderately similar. The dominant function groups are M, H1, LO, K in the inlet and outlet waters, mainly cyanobacteria. Functional group M is the dominant functional group in the inlet and outlet waters. The monthly biological density variation in the reservoir ranges from 280.1162×104 to 1750.7050×104 cells·L-1. The annual average biological density in the outlet water is 29.78% lower than that of the inlet water, but the difference is not significant. The biological density of Cyanophyta determines the monthly variation of the algal biological density in the reservoir and the difference of the annual average value of the algal biological density at the inlet and outlet. The results of redundancy analysis show that the environmental factors explained 53.59% variances of the phytoplankton in the reservoir. The M functional group, which had the absolute predominance, was greatly affected by and positively correlated with total nitrogen.Results show that a series of purification measures in the reservoir have a certain effect, but due to the influence of incoming water, the reservoir still has the risk of algal blooms. It is necessary to adjust the water quality preservation strategy in the reservoir and strengthen the purification of water quality to ensure the safety of drinking water.