研究报告
袁欢,刘欢,杨胜峰,陈子扬,叶代启,陈礼敏.水热溶剂对Cu/CeO2-TiO2催化CO2加氢制甲醇反应性能的影响[J].环境科学学报,2022,42(12):353-365
水热溶剂对Cu/CeO2-TiO2催化CO2加氢制甲醇反应性能的影响
- Effects of hydrothermal solvents on the catalytic performance of Cu/CeO2-TiO2 catalysts for CO2 hydrogenation to methanol
- 基金项目:华南理工大学中央高校基本科研业务费专项(No.2017ZD076);广东省自然科学基金面上项目(No.2019A1515011849)
- 袁欢
- 华南理工大学环境与能源学院,广州 510006
- 刘欢
- 华南理工大学环境与能源学院,广州 510006
- 杨胜峰
- 华南理工大学环境与能源学院,广州 510006
- 陈子扬
- 华南理工大学环境与能源学院,广州 510006
- 叶代启
- 华南理工大学环境与能源学院,广州 510006;挥发性有机物污染治理技术与装备国家工程实验室,广州 510006;广东省大气环境与污染控制重点实验室,广州 510006
- 陈礼敏
- 华南理工大学环境与能源学院,广州 510006;挥发性有机物污染治理技术与装备国家工程实验室,广州 510006;广东省大气环境与污染控制重点实验室,广州 510006
- 摘要:以高暴露(001)面锐钛矿TiO2为载体,使用3种不同溶剂(甲醇、乙二醇和丙三醇)水热负载CeO2,进而以CeO2-TiO2为载体采用硼氢化钠还原法负载Cu,合成Cu/CeO2-TiO2催化剂用于催化CO2加氢制甲醇.XRD、SEM、BET、ICP-OES、XPS、H2-TPR、EPR和CO2-TPD等表征表明,以 甲醇/水为混合溶剂合成的CeO2-TiO2(CT-M)载体中CeO2粒径较小、Ce3+浓度较高,更有利于Cu的负载与分散,形成紧密接触的三相界面;其负载Cu的催化剂CCT-M经焙烧、还原后形成的CuCeTi三相界面相互作用更强,可产生更多的表面Ce3+、氧空位和体相Ti3+,表面Ce3+、氧空位和体相Ti3+等缺陷有利于CO2的吸附活化,较小粒径的Cu则可加速氢解离,因此,CCT-M具有更多的CO2加氢反应活性位点,表现出最优的CO2加氢产甲醇活性.
- Abstract:Cu/CeO2-TiO2 catalysts for CO2 hydrogenation to methanol were synthesized by means of hydrothermal loading CeO2 onto anatase TiO2 with highly exposed(001)facets using three different solvents(methanol, ethylene glycol and glycerol), following by loading Cu through NaBH4 reduction method. XRD, SEM, BET, ICP-OES, XPS, H2-TPR, EPR and CO2-TPD characterizations indicate that CT-M using methanol/water as solvent is in favor of Cu loading and dispersion as a result of the smallest CeO2 particle diameter and the highest Ce3+ concentration, leading to the closely contact three-phase interface. After loading Cu, the interactions between Cu-CeOx-TiO2 three-phase interface over CCT-M catalyst are stronger during calcination and reduction process, producing more defects such as surface Ce3+, oxygen vacancies and bulk Ti3+, which are beneficial for the adsorption and activation of CO2. In addition, Cu species with smaller particle size accelerate the hydrogen dissociation. Therefore, CCT-M catalyst has more active sites for CO2 hydrogenation, exhibiting optimal CO2 hydrogenation to methanol activity.