研究报告
王莉,刘莹莹,张亚慧,董素涵.河南省农田生态系统碳源/汇时空分布及影响因素分解[J].环境科学学报,2022,42(12):410-422
河南省农田生态系统碳源/汇时空分布及影响因素分解
- Spatial and temporal distribution of carbon source/sink and decomposition of influencing factors in farmland ecosystem in Henan Province
- 基金项目:国家水体污染控制与治理科技重大专项(No.2015ZX07204- 002-05);河南省生态碳汇能力提升方法路径及措施研究项目(No.20210717A)
- 王莉
- 郑州大学生态与环境学院,河南省减污降碳协同工程技术研究中心,郑州 450001
- 刘莹莹
- 郑州大学生态与环境学院,河南省减污降碳协同工程技术研究中心,郑州 450001
- 张亚慧
- 郑州大学生态与环境学院,河南省减污降碳协同工程技术研究中心,郑州 450001
- 董素涵
- 郑州大学生态与环境学院,河南省减污降碳协同工程技术研究中心,郑州 450001
- 摘要:为明确河南省农田生态系统碳源/汇分布特征及影响因素,利用2010—2020年河南省农作物播种面积、产量等数据估算农田生态系统 碳源/碳汇量,分析其时空特征,并采用对数平均迪式指数法(LMDI加法分解模型)分别对碳源/汇的影响因素进行分解.结果表明,2010—2020年,河南省农田生态系统碳排放呈先增后降的趋势,田间氮肥施用所造成的碳排放贡献率最大,达74.39%~76.35%.各地市农田生态系统的 碳排放量、增幅及单位播种面积碳排放强度均存在显著差异.河南省农田生态系统碳吸收呈上升趋势,净增6.0×107 t,增幅为22.93%.各地市碳吸收量及单位播种面积碳吸收强度均呈增长态势,河南省农田生态系统碳汇能力不断增强,且碳吸收量大于碳排放量.在碳源影响因素分解中,农业能源利用水平和农业低碳技术水平的提高、劳动力规模的控制可有效减少碳排放;在碳汇影响因素分解中,碳汇系数、碳汇技术水平与碳吸收量呈正效应,且小麦碳汇能力最强.建议通过提高能源利用水平和低碳技术水平、调整农作物种植结构、发展循环农业模式等措施,实现农田生态系统降碳增汇.
- Abstract:In order to understand the carbon source (C-source) and sink (C-sink) of farmland ecosystem in Henan Province, this study analyzed the amount of C-source, C-sink and their spatial-temporal characteristics from 2010 to 2020 based on sown area, yield etc. In the meantime, the influence factors of C-source and C-sink were decomposed by employing a Logarithmic Mean Divisia Index (LMDI) additive decomposition model. The results demonstrates that, from 2010 to 2020, for C-source, it presented a tendency of increase first and then decrease, and 74.39%~76.35% of C-source was contributed via nitrogen fertilization. Different districts presented significant differences in their C-source amount, increase rate and emission intensity per unit sown area. For C-sink, it showed a rising trend by 22.93%, with a net increase of 6.0×107 t. All districts presented increase tendencies in both amount of C-sink and absorption intensity per unit sown area. The capacity of C-sink kept increasing, and the amount of C-sink was larger than the amount of C-source. The LMDI analysis shows that, for the amount of C-source, it could be effectively decreased by improving the utilization of agricultural energy, promoting the application of low-carbon technologies in agriculture, and reducing the size of agricultural labor force. For the amount of C-sink, it had a positive correlation with the coefficient of C-sink and the level of C-sink technology. Also, among all crops, the wheat poses the strongest capacity of C-sink. The findings in this study suggest that, to decrease the C-source and increase the C-sink, measures could be taken by promoting the energy utilization level, enhancing low-carbon technologies, optimizing the crop planting structure, developing circular agriculture modes.