特别选题
张金谱,裴成磊,陈彦宁,雷蕾,王新明,黄俊.基于垂直观测数据融合的广州市臭氧污染过程分析[J].环境科学学报,2023,43(1):171-180
基于垂直观测数据融合的广州市臭氧污染过程分析
- Analysis of an ozone episode in Guangzhou based on vertical observation data fusion
- 基金项目:广东省科技计划项目(科技创新平台类)(No.2019B121201002);广州市科技计划项目(No.202002020065);广州市科技计划项目(No.202102080679)
- 张金谱
- 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东省环境资源利用与保护重点实验室,广州 510640;中国科学院大学,北京 100049;广东省广州生态环境监测中心站,广州 510006
- 裴成磊
- 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东省环境资源利用与保护重点实验室,广州 510640;中国科学院大学,北京 100049;广东省广州生态环境监测中心站,广州 510006
- 陈彦宁
- 广东省广州生态环境监测中心站,广州 510006
- 雷蕾
- 广东省广州生态环境监测中心站,广州 510006
- 王新明
- 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东省环境资源利用与保护重点实验室,广州 510640;中国科学院大学,北京 100049
- 摘要:了解O3污染的垂直分布对于充分理解O3在大气中的扩散和输送具有重要意义.本研究利用最优插值法实现了高塔与激光雷达O3观测数据的融合,并基于垂直观测融合数据对2021年10月广州市一次O3污染过程进行分析,结果表明:①不同时刻的O3浓度均大致呈现出随高度上升先升后降的变化趋势,平均相对高值主要分布在300~500 m,最高值出现在400 m附近.②结合边界层高度分析可知,白天的O3生成和扩散基本均在边界层以内进行,夜间普遍存在O3残留问题,而在污染日尤其显著,表明白天光化学反应生成的高浓度O3是夜间残留层中O3的来源.③污染期间,不同大气污染物形成了不同的垂直分层,具体表现为较高浓度的PM2.5和NO2在中、低层积累,而高层(约200~600 m)则维持高浓度O3的污染垂直分布结构.推测原因在于南北气流对峙及夜间稳定边界层共同导致低层污染物累积于中心城区,而高层O3因得不到有效消耗而一直维持较高浓度的夜间残留.O3浓度的空间分布受水平风场、边界层高度和前体物浓度等多种因素的共同影响,对不同来源的数据进行融合利用,有助于进一步揭示O3的空间分布特征,为O3的科学防治提供依据.
- Abstract:Gaining insight into the vertical distribution of ozone (O3) pollution is of great importance to comprehend the dispersion and transport of O3 in the atmosphere. In this study, the optimal interpolation (OI) approach was employed to fuse high-tower and lidar O3 observation data, and the resultant data were used to analyze an O3 episode in Guangzhou in October 2021. The results reveal that: ①Ozone concentration was observed to increase initially and then decrease with increasing altitude. The highest average value was observed between 300~500 meters, with the peak value occurring at approximately 400 meters. ②By examining the boundary layer height, it can be seen that the generation and dispersion of O3 during the day were mainly occurring within the boundary layer, while O3 residues were commonly observed at night especially on polluted days, suggesting that the high concentration of O3 generated by photochemical reactions during the day was a source of O3 in the nighttime residual layer. ③The episode in Guangzhou urban area showed a distinct stratification of air pollutants, with PM2.5 and NO2 accumulating in the lower and middle layers, and O3 accumulating in the upper layers (about 200~600 m). A probable explanation is that the north-south airmass confrontation and the stable boundary layer at night contributed to the buildup of lower layer pollutants in the urban area, while the upper layer O3 concentration remained high since it could not be consumed effectively. The spatial distribution of the O3 concentration is affected by many factors, such as the horizontal wind field, boundary layer height, and precursor concentration. The fusion of data from multiple sources will allow us to gain a more comprehensive understanding of the spatial pattern of O3 and assist with the implementation measures for the prevention and control of O3 pollution.