研究报告

  • 朱雨锋,孙柳,李立青,张洪,唐文忠.黑臭水体治理Ⅰ:水体氧状态对沉积物中重金属形态及生物有效性的影响[J].环境科学学报,2023,43(2):1-10

  • 黑臭水体治理Ⅰ:水体氧状态对沉积物中重金属形态及生物有效性的影响
  • Treatment of black and odorous water Ⅰ: Effects of water oxygen state on speciation and bioavailability of heavy metals in sediments
  • 基金项目:国家自然科学基金资助项目(No.41877368)
  • 作者
  • 单位
  • 朱雨锋
  • 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085;中国地质大学(武汉)环境学院,武汉 430074
  • 孙柳
  • 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085;黄河水利水电开发集团有限公司,郑州 450000;中国科学院大学,北京 100049
  • 李立青
  • 中国地质大学(武汉)环境学院,武汉 430074
  • 张洪
  • 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085;中国科学院大学,北京 100049
  • 唐文忠
  • 中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085;中国科学院大学,北京 100049
  • 摘要:黑臭水体治理会逐步恢复上覆水中溶解氧浓度,基于这一过程构建了室内模拟装置,模拟上覆水不同氧状态,探究由此引发的氧化还原体系变化,及6种重金属元素(Co、Ni、Cu、As、Sb和Pb)的形态和生物有效性变化.结果表明,上覆水氧化还原电位为-109.60 ~ +136.40 mV,主要受铁锰体系控制,好氧和厌氧阶段沉积物氧化还原电位分别为-160.40 ~ -116.40 mV和-370.10 ~ -250.30 mV,分别由铁锰体系和硫体系控制.上覆水中溶解氧浓度上升会引起沉积物中有效态S和Fe减少,上覆水和浅层沉积物中有效态Mn减少,而有效态Fe和Mn浓度在溶解氧浓度降低后会逐步升高,说明上覆水氧状态改变能触动上覆水和沉积物中氧化还原体系变化.但上覆水氧状态改变不足以引起上覆水和沉积物中重金属总量变化(除Sb),上覆水中Co、Ni、Cu、As、Sb和Pb总量分别为0.94 ~ 1.69、2.23 ~ 3.06、0.62 ~ 1.43、0.48 ~ 0.98、0.89 ~ 5.64、0.14 ~ 0.26 μg·L-1,沉积物中分别为17.74 ~ 18.65、26.82 ~ 29.45、54.64 ~ 57.33、4.33 ~ 5.42、2.57 ~ 3.55和18.64 ~ 19.53 mg·kg-1.上覆水氧状态改变对沉积物中重金属形态和生物有效态变化也不明显.其中,Co、As和Pb以可还原态和残渣态(F4)为主,而Ni、Cu和Sb以F4态为主;Co、Ni、Cu、As、Sb和Pb生物有效态浓度分别为0.24 ~ 1.25、0.51 ~ 3.37、0.25 ~ 1.57、0.37 ~ 2.22、0.70 ~ 3.81和0.12 ~ 0.67 μg·L-1.
  • Abstract:Management of black odorous water has resulted in increased concentrations of dissolved oxygen in the overlying water. In this study, a laboratory-scale simulation device was developed to simulate different oxygen conditions of the overlying water, and to further explore the change in the redox system and in the speciation and bioavailability of six heavy metals (i.e., Co, Ni, Cu, As, Sb and Pb). The results showed that the redox potential of overlying water ranged from -109.60 mV to +136.40 mV, dominated by Fe-Mn, and the redox potential of sediment in aerobic and anaerobic phases ranged from -160.40 mV to -116.40 mV and from -370.10 mV to -250.30 mV, dominated by Fe-Mn and S. The increases of dissolved oxygen in the overlying water could lead to the decreases of bioavailable S and Fe in the sediments, and the decreases of bioavailable Mn in overlying water and shallow sediments. The elevated concentrations of bioavailable Fe and Mn after the increase of oxygen indicated that the changes of oxygen conditions in overlying water could change of redox system in overlying water and sediments. However, the changes of oxygen conditions in overlying water could not change of concentrations of total heavy metals in overlying water and sediment (except Sb), where the total concentrations of Co, Ni, Cu, As, Sb and Pb were 0.94~1.69, 2.23~3.06, 0.62~1.43, 0.48~0.98, 0.89~5.64 and 0.14~ 0.26 μg·L-1, respectively, in overlying water, and 17.74~18.65, 26.82 ~29.45, 54.64~ 57.33, 4 .33 ~ 5.42, 2.57 ~ 3.55 and 18.64 ~ 19.53 mg·kg-1, respectively, in sediment. There was no significant change in the speciation and bioavailability of heavy metals in sediments caused by different oxygen statuses in overlying water, where Co, As and Pb were mainly reducible (F2) and residue (F4), and Ni, Cu and Sb were mainly F4. The concentrations of bioavailable heavy metals (Ni, Cu, As, Sb and Pb) were 0.24 ~ 1.25, 0.51 ~ 3.37, 0.25 ~ 1.57, 0.37 ~ 2.22, 0.70 ~ 3.81 and 0.12~ 0.67 μg·L-1, respectively, in overlying water.

  • 摘要点击次数: 292 全文下载次数: 707