研究报告
卢诗文,吴康,刘鹏,黄皓旻,叶代启.钴酸镧基钙钛矿耦合非热等离子体催化转化CO2的实验研究[J].环境科学学报,2023,43(2):424-432
钴酸镧基钙钛矿耦合非热等离子体催化转化CO2的实验研究
- Experimental study on catalytic CO2 conversion by LaCoO3-based perovskites coupled with non-thermal plasma
- 基金项目:国家自然科学基金(No.51878292);广州市科技计划项目(No.202002020020)
- 卢诗文
- 华南理工大学环境与能源学院,广州 510006
- 吴康
- 华南理工大学环境与能源学院,广州 510006
- 刘鹏
- 华南理工大学环境与能源学院,广州 510006;挥发性有机物污染治理技术与装备国家工程实验室,广州 510006;广东省大气环境与污染控制重点实验室,广州 510006;广东省环境风险防控与应急处置工程技术研究中心,广州 510006
- 黄皓旻
- 华南理工大学环境与能源学院,广州 510006;挥发性有机物污染治理技术与装备国家工程实验室,广州 510006;广东省大气环境与污染控制重点实验室,广州 510006;广东省环境风险防控与应急处置工程技术研究中心,广州 510006
- 叶代启
- 华南理工大学环境与能源学院,广州 510006;挥发性有机物污染治理技术与装备国家工程实验室,广州 510006;广东省大气环境与污染控制重点实验室,广州 510006;广东省环境风险防控与应急处置工程技术研究中心,广州 510006
- 摘要:CO2的减排与利用是实现碳达峰和碳中和目标的重要途径.本文通过溶胶凝胶法将Sr和Zr掺入钙钛矿型LaCoO3结构中,合成了一系列钙钛矿催化剂,包括LaCoO3、La0.9Sr0.1CoO3-σ、La0.9Sr0.1Co0.9Zr0.1O3+σ和La0.9Sr0.1Co0.9Zr0.1O3,并考察了非热等离子体催化还原CO2为CO和CH4 的性能.同时在A位掺杂Sr和B位掺杂Zr的催化剂(La0.9Sr0.1Co0.9Zr0.1O3)反应活性最高,其CO2转化率为28.7%,分别比空管和LaCoO3 提高了23.7%和10.7%.结合XRD、SEM、Raman、XPS、H2-TPR以及CO2-TPD等表征结果,发现相比LaCoO3催化剂,La0.9Sr0.1Co0.9Zr0.1O3催化剂结构稳定,具有较小的粒径、更大的比表面积、良好的孔道结构以及丰富的氧空位,有利于吸附活化更多的CO2,并显著促进了等离子催化转化CO2.该催化剂的开发对等离子体催化体系高效应用于CO2的减排与利用具有积极意义.
- Abstract:The reduction and utilization of CO2 is one of the important ways to achieve carbon peaking and carbon neutrality. In this work, a series of perovskite catalysts by the Sr and Zr cations doping into the LaCoO3 structure, including LaCoO3, La0.9Sr0.1CoO3-σ, La0.9Sr0.1Co0.9Zr0.1O3+σ, and La0.9Sr0.1Co0.9Zr0.1O3, were synthesized by a sol-gel strategy and investigated the plasma-catalytic CO2 reduction to CO and CH4. The highest performances were obtained when the catalysts (La0.9Sr0.1Co0.9Zr0.1O3) were co-doped with the Sr and Zr cations at the A sites and B sites, respectively. The CO2 conversion rate (28.7%) of the La0.9Sr0.1Co0.9Zr0.1O3 catalysts was better than that of the empty reactor (23.7%) and LaCoO3 (10.7%). The XRD, SEM, Raman, XPS, H2-TPR, and CO2-TPD results showed that compared with LaCoO3 catalysts, the La0.9Sr0.1Co0.9Zr0.1O3 catalysts with the stable architecture presented the smaller particle size, larger specific surface areas, promising pore structure, and abundant oxygen vacancies, which facilitated the adsorption and activation of more CO2 and thus contributed to the plasma-catalytic conversion of CO2. The development of the catalysts is of profound significance for the application of high-efficiency plasma-catalytic system to CO2 reduction and utilization.