环境科学学报  2017, Vol. 37 Issue (4): 1404-1412
超声波协同活性碳纤维活化过一硫酸盐降解AO7    [PDF全文]
王莹, 陈家斌, 张黎明, 吴玮, 黄天寅    
苏州科技大学环境科学与工程学院, 苏州 215009
摘要: 采用超声波(US)和活性碳纤维(ACF)协同活化过一硫酸盐(PMS)产生硫酸根自由基(SO4-·)降解偶氮染料酸性橙7(AO7).在US/ACF/PMS体系中,当ACF投加量为0.3 g·L-1n(PMS)/n(AO7)为20/1,US功率密度为10 W·cm-2时,反应30 min后,AO7完全降解.其中,初始pH对AO7降解有较大的影响,pH为2.0时AO7降解效果最好;Cl-对US/ACF/PMS体系降解AO7有促进作用,Cl-浓度越高,AO7降解速率越快;且ACF在重复使用4次时,协同US活化PMS对AO7仍具有较好的脱色率.通过总有机碳分析发现,US/ACF/PMS体系对染料AO7具有一定的矿化率.采用紫外可见光谱、气相色谱-质谱(GC/MS)对AO7降解过程进行了分析,表明AO7分子中偶氮键及萘环结构均被破坏,并进一步矿化为CO2和H2O.
关键词: 活性碳纤维     超声波     过一硫酸盐     酸性橙7    
Synergistic activation of peroxymonosulfate by ultrasonic and activated carbon fiber to decolorize acid orange 7
WANG Ying, CHEN Jiabin, ZHANG Liming, WU Wei, HUANG Tianyin    
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009
Received 2 June 2016; received in revised from 7 August 2016; accepted 7 August 2016
Supported by the National Natural Science Foundation of China (No.51478283) and the Suzhou University of Science and Technology Academic Degree Plan for Research and Innovation Projects (No.SKCX15_026)
Biography: WANG Ying (1993—), female, E-mail:532501648@qq.com
*Corresponding author: HUANG Tianyin, E-mail:huangtianyin111@sohu.com
Abstract: Ultrasonic (US) and activated carbon fiber (ACF) were used to synergistically activate peroxymonosulfate (PMS) to decolorize the azo dye, Acid orange 7(AO7). The results indicate that the removal rate of AO7 could reach 100% after 30 min with 0.3 g·L-1 of ACF dosage, 20:1 of PMS/AO7 molar ratio and 10 W·cm-2 of US power. The initial pH had a significant effect on the AO7 degradation, and pH 2.0 was most favorable for its degradation. In addition, the degradation of AO7 was accelerated after the addition of Cl-, and the degradation rate increased with the increase of Cl-. When ACF was reused for four times, it still exhibited considerable activation capacity for PMS. Moreover, from the analysis with UV-vis spectra and gas chromatography-mass spectrometry (GC/MS) and TOC measurement, the azo bond and naphthalene ring in AO7 was found being destructed and then mineralized into CO2 and H2O.
Key words: activated carbon fiber     ultrasonic     peroxymonsulfate     acid orange 7    
1 引言 (Introduction)

每年纺织、造纸、制革等行业会产生大量染料废水,若不经处理直接排放,将对环境造成严重危害 (Eren, 2012).其中,偶氮染料 (—N=N—) 是使用最多的商业染料,占染料总量的50%,具有毒性强、含盐量高、致突变、致癌、难降解等特点 (Ji et al., 2009Xu et al., 2010).偶氮染料废水的常用处理方法有吸附 (Gupta et al., 2011)、膜过滤 (Anipsitakis et al., 2003)、光催化 (Saleh et al., 2012; Khataee et al., 2009)、臭氧化 (Bai et al., 2011; Faria et al., 2009) 等.其中,吸附和膜过滤虽然可以使偶氮染料废水脱色,但无法使偶氮染料降解和矿化,光催化和臭氧化能够氧化降解偶氮染料,但操作过程中都存在一些不足.

近年来,基于硫酸根自由基 (SO4-·) 的高级氧化技术对偶氮染料氧化降解作用明显 (Anipsitakis et al., 2003; Rastogi et al., 2009).硫酸根自由基 (SO4-·) 具有较高的氧化还原电位 (E0=2.5~3.1 V),可以氧化降解大部分有机污染物 (Yang et al., 2011),相比于羟基自由基 (HO·) 对溶液具有更宽的pH适用范围,且半衰期较长,有利于水中污染物的去除.过一硫酸盐是产生SO4-·的常用氧化剂,常温下比较稳定不易分解,在加热 (Waldemer et al., 2007; Liang et al., 2008; Ghauch et al., 2012)、紫外光照射 (Gao et al., 2012; He et al., 2013)、过渡金属离子 (Kusic et al., 2011; Rodriguez et al., 2014; Yang et al., 2015; Anipsitakis et al., 2003)、活性炭 (Oh et al., 2015; Lee et al., 2013) 等条件下,能够被活化产生SO4-·.但这些方法都存在一些缺点,如耗能和经济成本高、操作过于复杂、会造成二次污染等,从而限制了它们的应用.有学者发现,用活性碳纤维 (ACF) 能加速活化PMS产生SO4-·降解偶氮染料废水 (Yang et al., 2015),由于ACF经济成本低,因而具有很大优势.同时,有研究证明,超声波能促进活化PMS产生SO4-·(Cai et al., 2014; Gayathri et al., 2010),但由于超声波作用较小,因此,催化降解效果不明显.

本实验通过ACF/US协同活化PMS降解AO7,研究AO7降解的主要影响因素 (ACF投加量、PMS浓度、US功率、初始pH、Cl-浓度),并对各反应条件对降解反应的影响进行分析.

2 材料与方法 (Materials and methods) 2.1 材料试剂与实验设备

活性碳纤维 (ACF) 购于江苏苏通碳纤维有限公司,自行处理成5 mm的块状备用;过一硫酸盐 (HKSO5·0.5KHSO4·0.5K2SO4,PMS) 购于Sigma-Aldrich;酸性橙7(AO7) 购于国药集团化学试剂有限公司;盐酸 (HCl)、硫酸 (H2SO4)、苯酚 (Phenol)、氯化钠 (NaCl) 均为分析纯,购于国药集团化学试剂有限公司;实验室用水为去离子水.实验用超声波仪购于昆山市超声仪器有限公司 (KQ-200KDB型),实验用搅拌装置购于上海标本模型厂 (JB50-D型).

2.2 降解实验

在一定温度下,将250 mL AO7溶液注入烧杯,并保持AO7浓度为20 mg·L-1.加入一定量的PMS,用稀H2SO4或NaOH调节pH值,随后将一定量的ACF迅速加入到反应烧杯中并启动搅拌器 (转速300 r·min-1),同时立即启动超声波仪,记为反应开始时间.在预定反应时间间隔快速取样5 mL,用0.45 μm滤膜过滤留待后续测量.

2.3 分析方法

AO7浓度利用TU-1810紫外可见分光光度计测定,于AO7最大吸收波长484 nm处测量其吸光度,代入标准曲线求得对应染料浓度.AO7矿化率采用总有机碳分析仪 (TOC-LCPH,岛津) 测定.反应体系内自由基检测利用Perkinelmer LS55荧光分光光度计测定,荧光吸收波长为425 nm,激波长为315 nm.降解产物采用GC/MS测试分析 (Agilent 7890A/C),测试前现对反应样品预处理,预处理过程如下:取50 mL反应液并加入抑制剂淬灭后,加入30 mL二氯甲烷萃取3次,萃取液用无水硫酸钠脱水,旋转蒸发至1 mL后,利用GC/MS分析测定.

3 结果与讨论 (Results and discussion) 3.1 FT-IR分析

活性炭纤维在催化反应前后的FT-IR谱图如图 1所示,3430 cm-1处为O—H伸缩振动吸收峰 (O′Reilly et al., 1983),1730 cm-1附近的吸收峰是ACF表面羧基及内酯基中的C=O特征伸缩振动峰 (Demir Cakan et al., 2009; El Hendawy, 2006),1170 cm-1处可归于CH2—O—CH2中的C—O对称伸缩振动峰 (Sun et al., 2004; Fierro et al., 2007).从图 1可以看出,反应后,ACF表面官能团在3430 cm-1处有所减小,证明反应前后ACF表面O—H振动吸收峰可能活化PMS降解AO7.

图 1 ACF反应前后的FT-IR图谱 (a.反应前; b.反应后) Fig. 1 FT-IR spectra of the ACF (a.before the reaction; b.after the reaction)
3.2 不同体系下AO7降解效果

图 2显示了不同体系下AO7的脱色效果,结果表明,PMS单独存在时,AO7几乎不降解;加入超声波后,AO7在30 min内降解了9.8%,说明超声波对PMS有一定的活化作用;反应体系中仅有ACF进行吸附时,30 min内AO7浓度减小了62.4%;用ACF或GAC (颗粒活性炭) 活化PMS时,30 min内AO7分别降解了80.5%和25.0%;而加入US后,与ACF或GAC共同活化PMS时,AO7的脱色率分别为100%和51.7%,表明在有无US的条件下,ACF活化PMS的效果都要高于GAC;在加入US后,ACF活化PMS的效果最好,远超US和ACF单独活化PMS体系,说明US协同ACF活化PMS降解AO7效果显著.分析原因可能是,US在水中作用产生超声空化,形成瞬间的高温高压作用于ACF的微孔和表面,使得ACF微孔结构改变,导致ACF比表面积变大,其表面活性位点与AO7接触的机会变多,速度变快,同时其表面活性位点数量也增多,更有利于活化PMS产生SO4-·.而与GAC相比,ACF对PMS的活化效果更好,原因可能是ACF是一个高度多孔碳质材料,具有更大的比表面积和更多的活性点位 (Yao et al., 2013).

图 2 不同体系中AO7的降解效果 ([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1,[GAC]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 2 Degradation of AO7 in different systems
3.3 ACF投加量的影响

ACF投加量对AO7降解效果的影响如图 3所示.从图中可知,在US/ACF/PMS体系中,随着ACF投加量的增大,AO7的降解速率加快.投加量为0.05 g·L-1时,30 min时AO7的降解率为50%;投加量为0.3 g·L-1时,AO7在30 min时完全降解;继续增大投加量为0.6 g·L-1时,AO7在10 min就可完全降解.这主要是因为随着ACF投加量增大,有更多的活化点位活化PMS,产生自由基降解偶氮染料.

图 3 ACF投加量对AO7降解的影响 ([AO7]=20 mg·L-1,pH=7,n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 3 Effect of ACF dosage on the removal of AO7
3.4 PMS浓度的影响

不同PMS浓度对AO7降解的影响如图 4所示.相比于US/ACF体系,US/ACF/PMS体系氧化降解AO7的速率明显提高,当n(PMS)/n(AO7)=1/1~100/1时,30 min后AO7脱色率均达到100%,这说明反应过程中PMS浓度对AO7的降解反应有明显的作用.同时,当n(PMS)/n(AO7) 由1/1增加到40/1时,AO7降解速度显著加快.由此得出,在一定PMS浓度范围内,随着n(PMS)/n(AO7) 增大,活化降解AO7速率越快.但当PMS浓度过高时 (本实验中取n(PMS)/n(AO7)=100/1),反应速率没有进一步增大,且与n(PMS)/n(AO7)=40/1相比有稍许的抑制作用,原因可能是当PMS浓度过高时,会产生大量的自由基相互猝灭,使AO7降解速率减缓 (Yang et al., 2011).

图 4 PMS浓度对AO7降解的影响 ([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1,US功率10 W·cm-2) Fig. 4 Effect of PMS concentration on the removal of AO7
3.5 初始pH的影响

为了研究初始pH对US/ACF/PMS体系氧化降解AO7的影响,通过0.1 mol·L-1的NaOH和稀硫酸调节反应初始pH,结果如图 5所示.从图中可知,在pH为2时反应速率最快,且随着pH的增大,在pH分别为4、6、8时,反应速率逐渐降低;然而当pH=10时,反应速率又有所升高.这一现象可能与ACF的表面零电荷点有关,即水溶液中固体表面静电荷为0时的pH值.当溶液pH < pHpzc时,ACF表面带正电荷,溶液pH > pHpzc时,ACF表面带负电荷.经测得ACF的pHpzc为2.3,因此,当溶液pH分别为4、6、8时,ACF表面带负电荷.由于AO7为阴性染料,导致AO7与ACF的表面产生相互排斥的效果,使得表面反应不容易进行.Zhou等 (2015)证明,当溶液pH为强碱性的时候,对PMS的分解有一定促进作用,因此,当pH为10时,反应速率比pH为6和8时更快.

图 5 初始pH对AO7降解的影响 ([AO7]=20 mg·L-1,[ACF]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 5 Effect of initial pH on the removal of AO7
3.6 超声波功率的影响

不同超声波功率对AO7降解的影响如图 6所示,在无超声波作用情况下,20 min时AO7仅可以被降解80%左右;然而当超声波功率密度为4 W· cm-2时,AO7在20 min内降解率高达98.2%;继续增大超声波功率到10 W· cm-2,AO7脱色率有一定提高但不明显.这说明加入超声波能促进ACF/PMS体系降解AO7,且超声波功率对反应降解速率影响较小.这主要是因为在超声波的作用下产生的声空化现象 (Gayathri et al., 2010; Chen et al., 2012).即溶液内部溶解的一些微型气泡,这些气泡在超声波作用下震动,当累积的压力脉冲达到一定值时,气泡由于定向扩散增大,形成共振腔,然后突然闭合,闭合时会在周围产生几千个大气压的压力,形成微激波,促进PMS产生SO4-·.

图 6 超声波功率对AO7降解的影响 ([AO7]=20 mg· L-1,pH=7,[ACF]=0.3 g· L-1n(PMS)/n(AO7)=20/1) Fig. 6 Effect of ultrasonic power on AO7 removal
3.7 Cl-浓度对AO7降解体系的影响

印染工艺中往往通过投加NaCl加速染色,导致其产生的废水中通常含有大量的NaCl,然而Cl-对高级氧化过程有较大影响 (Chan et al., 2009).图 7显示了不同浓度NaCl对活化降解AO7的影响,可以看出,加入Cl-会促进AO7的降解,且随着Cl-浓度的增加,AO7降解速率增大.当Cl-浓度为1 mmol·L-1时,反应20 min时降解率可达98.7%;当Cl-浓度达到300 mmol·L-1时,AO7在10 min时已经降解完全.

图 7 NaCl浓度对AO7降解的影响 ([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 7 Effect of NaCl amounts on AO7 removal

产生以上实验结果的原因可能是,当NaCl存在时,Cl-与HSO5-反应生成具有强氧化性的HClO (式 (1)~(5))(Ji et al., 2015).在SO4-·和ClO-共同作用下,AO7降解速率明显提高.这与Yuan等 (2011)Zhou等 (2015)的研究结论一致.

(1)
(2)
(3)
(4)
(5)
3.8 自由基抑制剂对AO7降解速率的影响

研究表明,在活化PMS体系中,通常产生HO·、SO4-·和少量SO5-·,其中,SO5-·氧化能力相对较弱 (Xu et al., 2015).目前已有研究表明,叔丁醇 (TBA) 对HO·猝灭效果较好,而对SO4-·猝灭效果较弱;而甲醇 (MA) 含有α—H,对HO·和SO4-·均可以猝灭.因此,本实验先采用甲醇和叔丁醇对活化体系进行自由基鉴定,结果如图 8a所示.可以看出,在投加甲醇和叔丁醇体系中,在30 min时AO7依然可降解99%以上,相比未投加淬灭剂体系几乎没有变化.原因可能是MA和TBA是亲水性化合物,不容易靠近固体表面,由此可以猜测降解反应可能发生在ACF表面,因此,抑制剂对降解反应作用不明显.Liang等 (2013)Guan等 (2013)在研究抑制剂猝灭过程中同样发现,TBA和MA对反应降解抑制作用不明显.为了进一步证明体系是通过产生HO·或SO4-·氧化降解AO7,本文补充了体系中HO·的荧光光谱分析 (图 9),US/ACF/PMS体系中成功检测出HO·的吸收峰,且随着反应时间增加HO·的吸收峰越高,由于SO4-·产生后能够变成HO·(式 (6))(Li et al., 2013),因此,US/ACF/PMS体系氧化降解AO7一定是产生了HO·或SO4-·.

(6)
图 8 抑制剂 (苯酚) 浓度对AO7降解的影响 ([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2n(MA)/n(AO7)=1000/1,n(TBA)/n(AO7)=1000/1) Fig. 8 Effect of radical scavengers on AO7 removal

图 9 HO·的荧光光谱分析 Fig. 9 The fluorescence spectra analysis of HO·

此外,苯酚被认为能够更有效地淬灭SO4-·和HO·(Yang et al., 2011),同时,苯酚具有疏水性,易于吸附于固相物质 (GAC) 表面,从而阻止PMS与GAC的活性点位接触,导致降解结果下降 (Zhang et al., 2013).当溶液中PMS与ACF接触后,反应产生的SO4-·会被苯酚淬灭,从而导致降解效果下降.如图 8b所示,在投加苯酚体系中,当n(苯酚)/n(AO7)=100/1时,30 min时AO降解了93.6%;增大苯酚浓度为n(苯酚)/n(AO7)=1000/1时,30 min时AO7降解了81.5%,这与ACF在超声波条件下吸附效果相近 (去除率75%).可见苯酚对ACF活化PMS降解AO7的抑制作用很强.且从ACF的红外图 (图 1) 可以看出,其表面含有大量官能团,如O—H、C=O等,这些官能团可以活化PMS产生自由基 (Yang et al., 2015).由此可以推断ACF活化PMS产生SO4-·发生在ACF表面.

3.9 ACF的重复使用性

本文研究了ACF在超声条件下催化PMS降解AO7的重复使用性,结果如图 10所示.实验结果表明,在ACF重复使用3次时,AO7的降解率在反应30 min时仍会达到71.4%以上,在ACF重复使用4次后,30 min内对AO7的去除率降低到51.1%.原因可能是在降解AO7过程中,ACF首先将染料吸附,然后再将吸附在纤维中的染料原位催化降解.因此,催化过程中可能有部分染料及其中间产物吸附在ACF表面,从而影响其吸附性能.其次,在超声波存在条件下随着降解反应进行,ACF会由于超声波的作用而变碎,之后在用膜分离回收ACF的过程中,有部分ACF损失,也会导致AO7的降解率变小.

图 10 超声条件下ACF催化降解AO7的重复使用性 ([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 10 Recycling of ACF for catalytic removal of AO7
3.10 AO7降解紫外可见光谱及TOC变化

图 11a所示为US/ACF/PMS体系降解AO7过程中紫外可见光谱.可以看出,AO7主要有484 nm和310 nm处的特征吸收峰,分别代表AO7的发色基团偶氮键和萘环结构.随活化反应的进行,位于484 nm和310 nm处的AO7特征峰强度不断下降,表明AO7的偶氮键和萘环结构不断被SO4-·氧化;30 min后,偶氮键和萘环的特征峰近消失.

图 11 AO7降解紫外可见光谱 (a) 及TOC去除率 (b)([AO7]=20 mg·L-1,pH=7,[ACF]=0.3 g·L-1n(PMS)/n(AO7)=20/1,US功率10 W·cm-2) Fig. 11 UV-Vis spectra for degradation of AO7(a) and TOC removal in US /ACF/PMS systems (b)

为了进一步研究不同体系降解AO7的情况,本文还对反应过程中的TOC进行了测试,结果如图 11b所示,PMS/US、PMS/ACF和ACF/PMS/US体系30 min时对TOC的去除率分别为1.5%、73.1%和87.0%.结果表明,ACF/PMS/US体系对AO7不仅有良好的降解效果,而且具有一定的矿化能力.

3.11 AO7降解途径及产物分析

为了进一步推测ACF/PMS/US体系降解AO7过程,利用GC/MS对AO7降解过程中的产物进行了鉴定.检测到主要产物为苯醌、1, 2-萘醌和香豆素,其化合物产物结构式如表 1所示.结合紫外可见光谱及文献 (王忠明等, 2016) 推测其降解过程为:AO7首先偶氮键断裂分为芳香族化合物,再氧化开环为有机酸,进而降解为小分子酸,最后矿化为CO2和H2O,其历程如图 12所示.

表 1 GC/MS鉴定的3种主要产物图 Table 1 3 main intermediates of AO7 removal obtained with GC/MS

图 12 AO7可能的降解途径 Fig. 12 A possible pathway for degradation of AO7
4 结论 (Conclusions)

1) 采用US和ACF协同活化PMS降解AO7效果明显,而且可以证实ACF活化PMS产生的自由基主要是SO4-·,PMS被活化的场所在ACF表面.

2) AO7降解效果随超声波功率、PMS浓度、ACF投加量、Cl-浓度的增大而得到提高.初始pH对降解有较大的影响,在强酸及强碱性条件下有利于反应进行.

3) ACF催化降解AO7具有一定的重复利用性;AO7在降解过程中偶氮键和萘环结构被破坏,并逐渐矿化成CO2和H2O.

参考文献
[${referVo.labelOrder}] Anipsitakis G P, Dionysiou D D. 2003. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 37(20) : 4790–4797.
[${referVo.labelOrder}] Bai C P, Xiong X F, Gong W Q, et al. 2011. Removal of rhodamine B by ozone-based advanced oxidation process[J]. Desalination, 278(1/3) : 84–90.
[${referVo.labelOrder}] Cai C, Wang L, Gao H, et al. 2014. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water[J]. Journal of Environmental Sciences, 26(6) : 1267–1273. DOI:10.1016/S1001-0742(13)60598-7
[${referVo.labelOrder}] Chan K H, Chu W. 2009. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process[J]. Water Research, 43(9) : 2513–2521. DOI:10.1016/j.watres.2009.02.029
[${referVo.labelOrder}] Chen W, Su Y. 2012. Removal of dinitrotoluenes in wastewater by sono-activated persulfate[J]. Ultrasonics Sonochemistry, 19(4) : 921–927. DOI:10.1016/j.ultsonch.2011.12.012
[${referVo.labelOrder}] Demir Cakan R, Baccile N, Antonietti M, et al. 2009. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid[J]. Chemistry of Materials, 21(3) : 484–490. DOI:10.1021/cm802141h
[${referVo.labelOrder}] El Hendawy A A. 2006. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions[J]. Journal of Analytical and Applied Pyrolysis, 75(2) : 159–166. DOI:10.1016/j.jaap.2005.05.004
[${referVo.labelOrder}] Eren Z. 2012. Ultrasound as a basic and auxiliary process for dye remediation:A review[J]. Journal of Environmental Management, 104 : 127–141. DOI:10.1016/j.jenvman.2012.03.028
[${referVo.labelOrder}] Faria P C C, Órfão J J M, Pereira M F R. 2009. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents[J]. Applied Catalysis B:Environmental, 88(3/4) : 341–350.
[${referVo.labelOrder}] Fierro V, Torné Fernández V, Celzard A, et al. 2007. Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid[J]. Journal of Hazardous Materials, 149(1) : 126–133. DOI:10.1016/j.jhazmat.2007.03.056
[${referVo.labelOrder}] Gao Y, Gao N, Deng Y, et al. 2012. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal, 195-196 : 248–253. DOI:10.1016/j.cej.2012.04.084
[${referVo.labelOrder}] Gayathri P, Praveena Juliya Dorathi R, Palanivelu K. 2010. Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions[J]. Ultrasonics Sonochemistry, 17(3) : 566–571. DOI:10.1016/j.ultsonch.2009.11.019
[${referVo.labelOrder}] Ghauch A, Tuqan A M, Kibbi N, et al. 2012. Methylene blue discoloration by heated persulfate in aqueous solution[J]. Chemical Engineering Journal, 213 : 259–271. DOI:10.1016/j.cej.2012.09.122
[${referVo.labelOrder}] Guan Y, Ma J, Ren Y, et al. 2013. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 47(14) : 5431–5438. DOI:10.1016/j.watres.2013.06.023
[${referVo.labelOrder}] Gupta V K, Gupta B, Rastogi A, et al. 2011. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113[J]. Journal of Hazardous Materials, 186(1) : 891–901. DOI:10.1016/j.jhazmat.2010.11.091
[${referVo.labelOrder}] He X, de la Cruz A A, Dionysiou D D. 2013. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254nm activation of hydrogen peroxide, persulfate and peroxymonosulfate[J]. Journal of Photochemistry and Photobiology A:Chemistry, 251 : 160–166. DOI:10.1016/j.jphotochem.2012.09.017
[${referVo.labelOrder}] Ji P, Zhang J, Chen F, et al. 2009. Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation[J]. Applied Catalysis B:Environmental, 85(3/4) : 148–154.
[${referVo.labelOrder}] Ji Y, Dong C, Kong D, et al. 2015. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation:Kinetics, reaction products and transformation mechanisms[J]. Journal of Hazardous Materials, 285 : 491–500. DOI:10.1016/j.jhazmat.2014.12.026
[${referVo.labelOrder}] Khataee A R, Pons M N, Zahraa O. 2009. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation:Influence of dye molecular structure[J]. Journal of Hazardous Materials, 168(1) : 451–457. DOI:10.1016/j.jhazmat.2009.02.052
[${referVo.labelOrder}] Kusic H, Peternel I, Ukic S, et al. 2011. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix[J]. Chemical Engineering Journal, 172(1) : 109–121. DOI:10.1016/j.cej.2011.05.076
[${referVo.labelOrder}] Lee Y, Lo S, Kuo J, et al. 2013. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon[J]. Journal of Hazardous Materials, 261 : 463–469. DOI:10.1016/j.jhazmat.2013.07.054
[${referVo.labelOrder}] Li B, Li L, Lin K, et al. 2013. Removal of 1, 1, 1-trichloroethane from aqueous solution by a sono-activated persulfate process[J]. Ultrasonics Sonochemistry, 20(3) : 855–863. DOI:10.1016/j.ultsonch.2012.11.014
[${referVo.labelOrder}] Liang C, Bruell C J. 2008. Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders[J]. Industrial & Engineering Chemistry Research, 47(9) : 2912–2918.
[${referVo.labelOrder}] Liang H, Zhang Y, Huang S, et al. 2013. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate[J]. Chemical Engineering Journal, 218 : 384–391. DOI:10.1016/j.cej.2012.11.093
[${referVo.labelOrder}] 刘金生. 2007. 活性炭纤维脱硫与超声改性研究[D]. 上海: 上海交通大学
[${referVo.labelOrder}] Oh W, Lua S, Dong Z, et al. 2015. Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes[J]. Journal of Hazardous Materials, 284 : 1–9. DOI:10.1016/j.jhazmat.2014.10.042
[${referVo.labelOrder}] O'Reilly J M, Mosher R A. 1983. Functional groups in carbon black by FTIR spectroscopy[J]. Carbon, 21(1) : 47–51. DOI:10.1016/0008-6223(83)90155-0
[${referVo.labelOrder}] Rastogi A, Al-Abed S R, Dionysiou D D. 2009. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (Ⅱ) mediated advanced oxidation of chlorophenols[J]. Water Research, 43(3) : 684–694. DOI:10.1016/j.watres.2008.10.045
[${referVo.labelOrder}] Rodriguez S, Vasquez L, Costa D, et al. 2014. Oxidation of Orange G by persulfate activated by Fe (Ⅱ), Fe (Ⅲ) and zero valent iron (ZVI)[J]. Chemosphere, 101 : 86–92. DOI:10.1016/j.chemosphere.2013.12.037
[${referVo.labelOrder}] Saleh T A, Gupta V K. 2012. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide[J]. Journal of Colloid and Interface Science, 371(1) : 101–106. DOI:10.1016/j.jcis.2011.12.038
[${referVo.labelOrder}] Sun X, Li Y. 2004. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition, 43(5) : 597–601. DOI:10.1002/(ISSN)1521-3773
[${referVo.labelOrder}] Waldemer R H, Tratnyek P G, Johnson R L, et al. 2007. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 41(3) : 1010–1015.
[${referVo.labelOrder}] 王忠明, 陈家斌, 张黎明, 等. 2016. 活性炭负载Co3O4活化过一硫酸盐降解金橙G[J]. 环境科学, 2016(37) : 2591–2600.
[${referVo.labelOrder}] Xu L J, Chu W, Gan L. 2015. Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer[J]. Chemical Engineering Journal, 263 : 435–443. DOI:10.1016/j.cej.2014.11.065
[${referVo.labelOrder}] Xu X, Li X. 2010. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 72(1) : 105–111. DOI:10.1016/j.seppur.2010.01.012
[${referVo.labelOrder}] Yang S, Xiao T, Zhang J, et al. 2015. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution[J]. Separation and Purification Technology, 143 : 19–26. DOI:10.1016/j.seppur.2015.01.022
[${referVo.labelOrder}] Yang S, Yang X, Shao X, et al. 2011. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature[J]. Journal of Hazardous Materials, 186(1) : 659–666. DOI:10.1016/j.jhazmat.2010.11.057
[${referVo.labelOrder}] Yao Y, Wang L, Sun L, et al. 2013. Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity[J]. Chemical Engineering Science, 101 : 424–431. DOI:10.1016/j.ces.2013.06.009
[${referVo.labelOrder}] Yuan R, Ramjaun S N, Wang Z, et al. 2011. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process:Implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials, 196 : 173–179. DOI:10.1016/j.jhazmat.2011.09.007
[${referVo.labelOrder}] Zhang J, Shao X, Shi C, et al. 2013. Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon[J]. Chemical Engineering Journal, 232 : 259–265. DOI:10.1016/j.cej.2013.07.108
[${referVo.labelOrder}] Zhou J, Xiao J, Xiao D, et al. 2015. Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol[J]. Chemosphere, 134 : 446–451. DOI:10.1016/j.chemosphere.2015.05.027
[${referVo.labelOrder}] Zhou Y, Jiang J, Gao Y, et al. 2015. Activation of peroxymonosulfate by benzoquinone:A novel nonradical oxidation process[J]. Environ Sci Technol, 49(21) : 12941–12950. DOI:10.1021/acs.est.5b03595