2. 江苏省环境科学研究院, 南京 210036
2. Jiangsu Provincial Academy of Environmental Science, Nanjing 210036
磺胺类抗生素广泛用于医疗、农业和畜牧业(Qi et al., 2014),但其在生物体内难以彻底代谢,大量残余可通过排泄、排放等方式进入水环境(Diaz-Cruz et al., 2003).目前已在地表水、污水及地下水中均检测到相当浓度的磺胺类抗生素(Lapworth et al., 2012; Tang et al., 2015; 郭晓等, 2015),可能造成遗传交换、细菌抗性基因诱发并最终危害人体健康(Martinez, 2008; Laxminarayan et al., 2013).水体中抗生素的迁移、消减和毒性与其络合、吸附及降解等环境行为密切相关(Kummerer, 2009).其中,金属和有机配体的络合作用可改变抗生素的游离态和结合态分布,影响其界面转移及生物有效性(Chen et al., 2015; Bai et al., 2017).
可溶有机质(Dissolved Organic Matter, DOM)是天然水体中普遍存在的异质混合物,按腐殖程度可分为新近产生DOM和老化DOM(冯佳莹等, 2016).新近产生的DOM主要来自浮游藻类和微生物代谢,新鲜度较高,以生物大分子为主;而老化DOM则降解过程较长,以腐殖质为主(Toming et al., 2013).DOM含有丰富的亲水、疏水基团,可与无机、有机污染物发生络合(Xu et al., 2014; Yuan et al., 2015; 龚香宜等, 2017),且络合能力取决于DOM组成和结构(基团、分子质量、疏水性等)(Lei et al., 2014; Yeh et al., 2014; Lin et al., 2018).因此,不同腐殖程度DOM与有机污染物的络合能力应当不同.但目前,关于生物大分子DOM和腐殖化DOM与磺胺类抗生素相互作用的研究较少.
DOM与有机污染物相互作用的主要研究手段有平衡透析、荧光猝灭、固相萃取和超滤等(Pan et al., 2012; Zhao et al., 2014).其中荧光猝灭具有灵敏、易行、无损等优点,其机制包括静态猝灭和动态猝灭两种.前者为猝灭剂与DOM荧光团形成稳定的非荧光复合物造成荧光性降低,而后者是由于猝灭剂和荧光团之间的动态碰撞(Xu et al., 2013).然而,DOM中某些荧光团的光谱可能重叠,常规的“挑峰法”不易表征不同波长处不均匀分布的潜在络合位点.近年来,三维荧光光谱联合平行因子分析(Excitation Emission Matrix with Parallel Factor Analysis, EEM-PARAFAC)可有效分离出相对独立的DOM荧光组分,有助于明确各组分在荧光猝灭中与污染物的络合特征.此外,结合二维相关图谱(Two Dimensional Correlation Spectroscopy, 2D-COS)可进一步揭示猝灭过程中不同荧光组分的动态响应顺序(Xu et al., 2014).因此,联合EEM-PARAFAC和2D-COS分析可从不同层面阐述DOM与磺胺类抗生素的相互作用.
本研究以藻源DOM(Algae-derived DOM, AOM)和腐殖酸(Humic Acid, HA)作为典型生物大分子DOM和腐殖化DOM,以磺胺二甲基嘧啶(Sulfamethazine, SMZ)作为典型磺胺类抗生素.SMZ是常见的一种广谱性抗生素,在水环境中普遍检出(Tang et al., 2015; Zhou et al., 2016).采用荧光猝灭滴定结合EEM-PARAFAC和2D-COS分析,探究DOM与SMZ的络合特征,揭示DOM不同荧光组分与SMZ相互作用的微观机制.该研究结果有利于加深理解天然水体中不同DOM介导下磺胺类抗生素的迁移转化和生态风险.
2 材料和方法(Materials and methods) 2.1 药剂和DOM制备从Sigma-Aldrich化学公司购买SMZ(CAS: 57-68-1)(纯度> 99%)和腐殖酸钠,其他化学药剂均为分析纯,由Sino-Pharm化学公司提供.
0.02 mol·L-1磷酸盐缓冲液(Phosphate buffer solution, PBS)(pH为6.98)配制:将60 mL 0.02 mol·L-1的Na2HPO4溶液和40 mL 0.02 mol·L-1的KH2PO4溶液混合.
2017年7月在太湖梅梁湾采集蓝藻,冻干、研磨后称取5 g至1 L Milli-Q超纯水中.于黑暗条件下室温振荡5 d后,经离心、过滤(0.7 μm GF/F滤膜)得到原始AOM溶液(Hunt and Ohno, 2007).与天然水体DOM相比,该提取方法得到的DOM为相对新鲜、新近产生的生物大分子DOM.用透析袋(3500 Da)将原始AOM在4 ℃下透析24 h以去除无机盐和小分子物质.透析前后AOM浓度损失为8%.将1 g腐殖酸钠溶于1 L超纯水,过滤后所得滤液为HA溶液.最后用超纯水将AOM和HA溶液稀释至30 mg·L-1,冻存备用.
2.2 荧光猝灭滴定分别取15 mL AOM和HA溶液到50 mL棕色玻璃管中,添加一定量的SMZ储备液(溶于甲醇)和PBS,使得最终反应体系为:总体积30 mL,DOM浓度15 mg·L-1,SMZ浓度0 ~15 mg·L-1,PBS浓度0.01 mol·L-1.SMZ储备液添加量小于总体积的0.1%.用聚四氟乙烯塞密封,室温下振荡8 h.预实验表明DOM与SMZ在8 h内达到反应平衡.平衡后测定混合液的紫外可见(UV-Vis)、同步荧光和EEM光谱.设置3个平行实验,取平均值.
2.3 分析方法可溶有机碳(Dissolved organic carbon, DOC)浓度由总有机碳分析仪(TOC-Vcph,岛津)测定.UV-Vis光谱由紫外可见分光光度计(UV-2700,岛津)测定,波长范围200~800 nm,间隔1 nm,狭缝宽度1 nm,扫描速度210 nm·min-1,超纯水为空白参比.同步荧光光谱由荧光分光光度计(F-7000,日立)测定,扫描模式700 V氙灯,激发波长200 ~450 nm,间隔1 nm,发射波长与激发波长差值固定为60 nm,扫描速度240 nm·min-1.EEM光谱的激发波长范围200~450 nm,间隔5 nm,发射波长范围250~550 nm,间隔1 nm,狭缝宽度均为5 nm,扫描速度1200 nm·min-1.测得的同步荧光光谱和EEM光谱按仪器方法消除误差,并进行水拉曼散射校正.内滤效应校正按式(1)进行:
(1) |
式中,Fobs和Fcor分别为校正前和校正后的荧光强度,AEX和AEM分别为相应激发和发射波长处的吸收值.将校正后的EEM数据导入MATLAB(R2012a)中drEEM工具箱进行瑞利散射校正,并将荧光强度标准化为Raman Unit 350 nm(RU350)以消除灯源的日常误差(Murphy et al., 2013).
2.4 数值模型 2.4.1 PARAFAC分析PARAFAC分析是将一系列EEM光谱分离成数学、化学相对独立的组分(每个组分代表独立的荧光团或强烈共变化荧光团).独立荧光团或共变化荧光团的EEM光谱通过各组分的发射和激发光谱表征.用drEEM工具箱分析后,采用残差分布和半检验分析验证模型有效性,该检验集合了6个不同的半数据集,并生成3个有效性检验“S4C6T3”(Splits-4, Combinations-6, Tests-3)(Murphy et al., 2013).每个组分的相对浓度用最大荧光强度(Fmax)表示.
2.4.2 Ryan-Weber猝灭方程猝灭剂对DOM荧光组分的猝灭过程可用Ryan-Weber方程拟合(Ryan and Weber, 1982),该方程基于1:1静态猝灭模型,如式(2)所示:
(2) |
式中,F0和F分别为DOM荧光组分的初始荧光强度和当SMZ浓度为cS(mol·L-1)时的荧光强度,Fend为络合能力达到饱和时的荧光强度,cL为DOM荧光组分中有效配位体的浓度(mol·L-1),K是络合稳定常数.因为常规的3参数非线性拟合可能低估cL值(Luster et al., 1996),按式(3)将式(2)转化为双参数方程:
(3) |
其中|Fend-F0|和α为拟合参数.运用DataFit 9软件对式(2)和式(3)进行非线性拟合.此外,DOM荧光组分中可与SMZ络合的比例f按式(4)计算:
(4) |
为定性考察SMZ与DOM荧光组分的络合反应顺序,以SMZ浓度作为外部扰动因素,对DOM的同步荧光光谱进行2D-COS分析(Noda and Ozaki, 2005).将同步荧光光谱减去空白光谱后,运用2D Shige软件进行标准化和2D-COS分析,并用MATLAB软件重新绘制谱图.
3 结果与讨论(Results and discussions) 3.1 AOM和HA的EEM光谱一般认为发射波长低于380 nm的荧光峰与含有羟基和氨基等电子供体的苯环结构有关,而大于380 nm的荧光团则含有多环芳香结构(Ishii and Boyer, 2012).因此,天然水体中发射波长大于380 nm的荧光峰通常为类蛋白质组分,而发射波长小于380 nm的荧光峰可归为类腐殖组分.AOM的EEM光谱如图 1a所示,一个荧光峰位于Ex/Em 275/330 nm,为类蛋白物质.HA有两个荧光峰,分别位于Ex/Em 250/450 nm和305/432 nm(图 1b),为类腐殖物质.显然,AOM荧光组分主要由类蛋白物质,而类腐殖物质是HA的主要荧光组成,这与文献报道一致(Toming et al., 2013).不过,虽然EEM光谱可表征DOM荧光组分的宏观信息,但因不同荧光团光谱重叠,无法进一步确定各独立荧光组分的特征.
通过PARAFAC分析模型计算得到一个四组分模型,并通过半检验分析验证(图 2).组分C1的激发和发射最大值分别位于235 nm和410 nm,与类腐殖质中的类富里酸荧光组分相似(Lee and Hur, 2016).组分C2的两个激发最大值分别位于275 nm和360 nm,一个发射最大值位于470 nm,与类腐殖质中的类腐殖酸峰相似.组分C3分别于235 nm和280 nm处存在激发最大值,于340 nm处存在发射最大值,与类蛋白质中的类色氨酸组分相似.组分C4具有两个荧光峰,分别为位于Ex/Em 235/305 nm和265/305 nm,可归为类蛋白质中的类酪氨酸组分.根据各组分的Fmax值,AOM中C1、C2、C3和C4对总荧光强度的贡献分别为6%、5%、72%和17%,而HA的荧光性主要来自于C1(46%)和C2(54%).因此,AOM荧光组分主要由类色氨酸组成,其次为类酪氨酸;而HA荧光组分由类富里酸和类腐殖酸组成.与传统“挑峰法”相比,EEM-PARAFAC可准确定量DOM的荧光组分.
同步荧光光谱可表明猝灭剂对DOM分子构象的影响,提供荧光基团微环境的相关信息(Bi et al., 2016).两种DOM的同步荧光光谱对SMZ荧光滴定的响应如图 3所示.随SMZ浓度升高,AOM中233 nm和275 nm处的两个荧光峰强度显著降低,313 nm处的荧光强度也一定程度上降低,但378 nm处的荧光峰变化不明显.类色氨酸物质的发射波长一般比类酪氨酸物质长,故233 nm处的荧光猝灭可归于SMZ和类酪氨酸物质的相互作用.同时,SMZ和类色氨酸物质的络合作用造成275 nm处的荧光性降低.与AOM的EEM光谱一致,313 nm和378 nm处的两个荧光峰分别为类富里酸和类腐殖酸荧光团.这两个荧光组分的疏水性、芳香性和分子质量不同,对SMZ的响应特征也不同.HA中300~350 nm处的荧光强度随SMZ浓度升高而降低,但350~450 nm范围的荧光性基本不变,说明类富里酸物质对SMZ的络合作用强于类腐殖酸物质.另外,由于SMZ自身在275~280 nm处存在很弱的荧光贡献,故HA中280 nm附近的荧光强度随SMZ浓度升高而略微升高.
AOM中类蛋白物质的荧光猝灭很强,表明DOM与SMZ的络合作用可引发类蛋白组分的电子构象变化.同时,随SMZ浓度升高,275 nm处的荧光峰持续红移到289 nm,且红移波长数与荧光猝灭程度正相关.这意味着SMZ可改变DOM中色氨酸残基的微环境极性,且SMZ浓度越高,色氨酸残基的亲水性越强(Bi et al., 2016).有研究指出SMZ可降低牛血清蛋白中色氨酸残基的疏水性,而对酪氨酸残基的微环境无明显影响(Bani-Yaseen, 2011).因此,SMZ与DOM的相互作用可改变类色氨酸残基的分子构象,形成新的类色氨酸复合体.HA中类富里酸物质和类腐殖酸物质的猝灭程度明显不同,证实DOM不同组分对SMZ的亲和力不同,络合点位分布不均匀.
3.2.2 2D-COS分析对DOM同步荧光图谱进行2D-COS分析以揭示不同荧光组分与SMZ的络合顺序(图 4).AOM同步图中,沿对角线275 nm处观察到一个正交峰,说明该峰相对应的类色氨酸物质荧光强度变化最显著.对角线下方275/233 nm处的正交叉峰表明类酪氨酸与类色氨酸物质的光谱变化方向一致(随SMZ浓度升高而降低)(Hur and Lee, 2014).AOM异步图中对角线下方存在两个负交叉峰,分别位于275/233 nm和280/275 nm处.Noda规则规定,若同步图中λ1/λ2处交叉峰为正,那么异步图中λ1/λ2处的正交叉峰表明λ1处强度变化优先于λ2处发生,而位于λ1/λ2的负交叉峰表明λ1处强度变化迟于λ2处发生(Noda and Ozaki, 2005).根据以上光谱特征,AOM各波长对SMZ的响应顺序为233>275>280 nm,即类酪氨酸物质对SMZ的敏感性高于类色氨酸物质.280 nm处的荧光峰是由275 nm处的荧光峰红移所致,其变化较迟.由于AOM中类腐殖组分含量远低于类蛋白组分,所以2D-COS未能揭示其响应顺序.HA同步图中,沿对角线280 nm和313 nm处各存在一个正交峰,说明该区域光谱变化最显著.同时,对角线下方280/313 nm处的负交叉峰证实280 nm和313 nm处的光谱变化方向相反.HA异步图中,对角线下方280/313 nm处存在一个正交叉峰,表明280 nm处的光谱变化迟于313 nm.这可能是因为280 nm处的荧光峰由313 nm处的荧光峰与SMZ络合而形成.长发射波长处的荧光团猝灭程度很弱,猝灭顺序未能表征.
荧光猝灭滴定中AOM和HA的UV-Vis吸收光谱变化如图 5所示.200 nm附近的强吸收峰来自于聚多肽结构吸收,230 ~310 nm之间的吸收峰可归为类色氨酸和类酪氨酸组分中氨基酸分子侧链的光吸收,而240和260 nm附近的吸收峰为SMZ特征峰(Bani-Yaseen, 2011).随SMZ浓度升高,吸光度和光谱形状均发生改变,意味着SMZ可改变DOM分子的微环境(大分子构象).另一方面,UV-Vis光谱的剧烈变化也证实荧光猝灭属于静态猝灭.这是因为通常分子间碰撞仅可影响激发态分子,而猝灭物质的吸收光谱并不会改变(Xu et al., 2013).
与同步荧光光谱相比,EEM-PARAFAC可提供荧光猝灭中DOM不同组分的具体络合信息.如图 6所示,两种DOM中4个荧光组分对SMZ的响应不同.AOM中,添加5 mg·L-1的SMZ显著降低C4的荧光强度(91%),但C1、C2和C3的猝灭程度较弱(11%、31%和5%).随SMZ浓度升高,C4的荧光强度完全被猝灭,而C1、C2、C3的猝灭程度逐渐增强,说明SMZ优先与类酪氨酸组分作用.该现象与2D-COS结果一致,即235 nm处的荧光猝灭优先于275 nm.当SMZ浓度升高至15 mg·L-1时,4个组分的猝灭比例分别为31%、98%、90%和100%,表明类腐殖酸物质中SMZ的有效络合点位最少.HA中,C1和C2与SMZ的相互作用降低了它们的荧光性,且C1的猝灭程度高于C2.C1和C2中最终猝灭部分分别为62%和23%.前人研究发现相同温度范围内色氨酸标准物的猝灭效应强于腐殖质标准物(Baker, 2005),但也有文献报道L-酪氨酸比L-色氨酸溶液的荧光猝灭更强(Wang et al., 2015).这些结果表明DOM荧光组分与SMZ的络合作用与其来源、结构密切相关.两种DOM中C1和C2对SMZ的响应特征相似,证实类腐殖酸物质与SMZ的相互作用弱于类富里酸物质,与DOM来源无关.AOM中C3和C4不仅浓度高,而且络合作用强,意味着类蛋白组分在SMZ络合中起主导作用.
运用Ryan-Weber非线性方程拟合获得DOM荧光组分与SMZ的络合参数.如表 1所示,4个荧光组分的拟合度很高(R2 > 0.91, p < 0.001).f值表明AOM中C1和C4能够被完全猝灭,但只有部分C3(92%)和C2(36%)可被猝灭.HA中62%的C1可被SMZ络合,而大部分C2(75%)的荧光性难以被猝灭.荧光猝灭与DOM荧光结构和浓度相关,因此,两种DOM中相同荧光组分的可猝灭比例不同.AOM和HA中各荧光组分的logK值范围为1.57~3.33,与富里酸对芴和蒽的络合系数接近(Lu et al., 2013),但显著低于土壤DOM与洛克沙砷络合作用的logK值(5.06)(Fu et al., 2016).前人采用EEM-PARAFAC和Ryan-Weber模型拟合长江河口DOM与立通定的荧光猝灭过程,发现logK值在3.10~5.23之间(Wang et al., 2016);湖泊草源DOM与SMZ络合作用的logK值范围为2.06~4.25(Bai et al., 2017);腐殖质和卡马西平的络合系数logK值范围为3.41~5.04(Bai et al., 2008).这些差异主要取决于DOM组成、污染物种类以及络合模型.
AOM中logK值大小顺序为C1>C4>C3>C2,即类富里酸组分与SMZ的络合作用最稳定,其次为类酪氨酸和类色氨酸组分,而类腐殖酸组分的络合稳定性最低.与此一致,HA中C1的logK值大于C2.在DOM与卡马西平的相互作用中类富里酸组分的络合作用也强于类蛋白组分,主要归因于离子架桥、氢键以及范德华力等结合机制(Hernandez-Ruiz et al., 2012).此外,π-π键也是类富里酸组分中芳香基与有机污染物的重要作用机制(Bai et al., 2008).SMZ是一种两性化合物(pKa分别为2.3和7.4),当pH为6.8时,72%的SMZ以中性形态存在,而阴离子态占28%.文献指出,疏水作用是蛋白质与中性有机污染物的主要络合机制(Loo, 2000).3种磺胺类抗生素(磺胺嘧啶、磺胺甲基嘧啶和SMZ)与活性污泥胞外聚合物中类蛋白组分的络合系数与抗生素的疏水性成正比,证明疏水作用是络合过程中的重要机制(Xu et al., 2013).蛋白组分与抗生素络合的主要官能团一般包括氨基、脂肪基和芳香基等(Fu et al., 2016).本研究中类酪氨酸物质对SMZ的亲和力高于类色氨酸物质,可能与类酪氨酸残基的分布比类色氨酸残基更均匀有关(Wang et al., 2015).综上所述,虽然类富里酸组分对SMZ的亲和力最强,但AOM中C1荧光贡献很低,故络合机制主要为类酪氨酸和类色氨酸组分的疏水作用.与此相反,HA不含类蛋白组分,类富里酸组分的氢键、π-π键可能为主要结合机制.
以上结果突出了蓝藻水华暴发产生的生物大分子DOM及老化DOM对水环境中抗生素环境行为的潜在影响.DOM的络合作用可减少有机污染物的游离态分布,进而影响其生物有效性.前人研究发现水体中高浓度的蛋白质组分与全氟烃基物络合后,全氟烃基物分子尺寸增大,难以被大型蚤摄取、富集和代谢(Xia et al., 2013).然而,分子质量为5000~10000 Da的DOM与疏水有机污染物络合后,可通过内吞作用增强疏水有机污染物的生物有效性(Lin et al., 2018).进一步地,游离态和络合态的抗生素对微生物具有不同的选择性压力,调控微生物群落中抗性基因的诱发和保留.文献指出腐殖质可抑制四环素诱发微生物的抗性基因表达,且抑制作用与腐殖质对四环素的亲和力成正比(Chen et al., 2015).因此,富营养化水体中大量的AOM和HA与SMZ形成复合物,可能降低了SMZ的生物有效性.当评估水体中抗生素的生态环境风险时,DOM与抗生素的化学络合不可忽视.另外,水环境参数(如DOM浓度、pH、金属离子等)可能影响DOM与抗生素的相互作用,有待研究.
4 结论(Conclusions)采用荧光猝灭滴定和光谱分析研究了SMZ与AOM(生物大分子DOM)和HA(腐殖化DOM)的络合作用.SMZ可与AOM中类色氨酸、类酪氨酸、类富里酸和类腐殖酸等荧光组分形成非荧光络合物,降低荧光性,并诱发分子构象变化.类似地,HA中类富里酸和类腐殖酸的组分也可被SMZ有效猝灭.4种荧光组分与SMZ的荧光猝灭过程符合Ryan-Weber模型,且类富里酸组分与SMZ的络合稳定常数(logK)最大,其次为类酪氨酸和类色氨酸组分,而类腐殖酸组分的络合稳定性最低.总体上,AOM中主要络合荧光因子为类酪氨酸和类色氨酸组分,而HA中主要络合荧光因子为类富里酸组分.本研究表明蓝藻水华暴发产生的DOM可改变抗生素的存在形态并影响其生物有效性.
Bai L, Cao C, Wang C, et al. 2017. Roles of phytoplankton-and macrophyte-derived dissolved organic matter in sulfamethazine adsorption on goethite[J]. Environmental Pollution, 230: 87–95.
|
Bai Y, Wu F, Liu C, et al. 2008. Interaction between carbamazepine and humic substances:A fluorescence spectroscopy study[J]. Environmental Toxicology and Chemistry, 27(1): 95–102.
DOI:10.1897/07-013.1
|
Baker A. 2005. Thermal fluorescence quenching properties of dissolved organic matter[J]. Water Research, 39(18): 4405–4412.
DOI:10.1016/j.watres.2005.08.023
|
Bani-Yaseen A D. 2011. Spectrofluorimetric study on the interaction between antimicrobial drug sulfamethazine and bovine serum albumin[J]. Journal of Luminescence, 131(5): 1042–1047.
|
Bi H, Tang L, Gao X, et al. 2016. Spectroscopic analysis on the binding interaction between tetracycline hydrochloride and bovine proteins beta-casein, alpha-lactalbumin[J]. Journal of Luminescence, 178: 72–83.
DOI:10.1016/j.jlumin.2016.05.048
|
Chen Z, Zhang Y, Gao Y, et al. 2015. Influence of dissolved organic matter on tetracycline bioavailability to an antibiotic-resistant bacterium[J]. Environmental Science & Technology, 49(18): 10903–10910.
|
Diaz-Cruz M S, de-Alda M J L, Barcelo D. 2003. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. TrAC Trends in Analytical Chemistry, 22(6): 340–351.
|
Fu Q, He J, Blaney L, et al. 2016. Roxarsone binding to soil-derived dissolved organic matter:Insights from multi-spectroscopic techniques[J]. Chemosphere, 155: 225–233.
|
冯伟莹, 朱元荣, 吴丰昌, 等. 2016. 太湖水体溶解性有机质荧光特征及其来源解析[J]. 环境科学学报, 2016, 36(2): 475–482.
|
龚香宜, 徐威, 何炎志. 2017. 溶解性有机质的光谱特征及其对土壤吸附β-HCH的影响[J]. 环境科学学报, 2017, 37(1): 318–325.
|
郭晓, 李国良, 刘孝利, 等. 2015. 梅江流域沉积物中四环素类抗生素的空间分布特征及其迁移转化规律[J]. 环境科学学报, 2015, 35(10): 3202–3209.
|
Hernandez-Ruiz S, Abrell L, Wickramasekara S, et al. 2012. Quantifying PPCP interaction with dissolved organic matter in aqueous solution:Combined use of fluorescence quenching and tandem mass spectrometry[J]. Water Research, 46(4): 943–954.
|
Hunt J F, Ohno T. 2007. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis[J]. Journal of Agricultural and Food Chemistry, 55(6): 2121–2128.
DOI:10.1021/jf063336m
|
Hur J, Lee B M. 2014. Characterization of copper binding properties of extracellular polymeric substances using a fluorescence quenching approach combining two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure, 1069: 79–84.
DOI:10.1016/j.molstruc.2013.11.056
|
Ishii S K L, Boyer T H. 2012. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems:A critical review[J]. Environmental Science & Technology, 46(4): 2006–2017.
|
Kummerer K. 2009. Antibiotics in the aquatic environment-A review-Part I[J]. Chemosphere, 75(4): 417–434.
|
Lapworth D J, Baran N, Stuart M E, et al. 2012. Emerging organic contaminants in groundwater:A review of sources, fate and occurrence[J]. Environmental Pollution, 163: 287–303.
DOI:10.1016/j.envpol.2011.12.034
|
Laxminarayan R, Duse A, Wattal C, et al. 2013. Antibiotic resistance-the need for global solutions[J]. Lancet Infectious Diseases, 13(12): 1057–1098.
|
Lee B M, Hur J. 2016. Adsorption behavior of extracellular polymeric substances on graphene materials explored by fluorescence spectroscopy and two-dimensional fourier transform infrared correlation spectroscopy[J]. Environmental Science & Technology, 50(14): 7364–7372.
|
Lei K, Han X, Fu G, et al. 2014. Mechanism of ofloxacin fluorescence quenching and its interaction with sequentially extracted dissolved organic matter from lake sediment of Dianchi, China[J]. Environmental Monitoring and Assessment, 186(12): 8857–8864.
DOI:10.1007/s10661-014-4049-2
|
Lin H, Xia X, Bi S, et al. 2018. Quantifying bioavailability of pyrene associated with dissolved organic matter of various molecular weights to Daphnia magna[J]. Environmental Science & Technology, 52(2): 644–653.
|
Loo J A. 2000. Electrospray ionization mass spectrometry:A technology for studying noncovalent macromolecular complexes[J]. International Journal of Mass Spectrometry, 200(1/3): 175–186.
|
Lu R, Sheng G, Liang Y, et al. 2013. Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water[J]. Environmental Science and Pollution Research, 20: 2220–2225.
DOI:10.1007/s11356-012-1087-6
|
Luster J, Lloyd T, Sposito G, et al. 1996. Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(Ⅱ) and aluminum(Ⅲ) complexation by dissolved organic matter[J]. Environmental Science & Technology, 30(5): 1565–1574.
|
Martinez J L. 2008. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 321(5887): 365–367.
DOI:10.1126/science.1159483
|
Murphy K R, Stedmon C A, Graeber D, et al. 2013. Fluorescence spectroscopy and multi-way techniques. PARAFAC[J]. Analytical Methods, 5(23): 6557–6566.
DOI:10.1039/c3ay41160e
|
Noda I, Ozaki Y. 2005. Two-dimensional correlation spectroscopy:Applications in vibrational and optical spectroscopy[M]. London: John Wiley and Sons Inc.
|
Pan B, Liu Y, Xiao D, et al. 2012. Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach[J]. Environmental Pollution, 161: 192–198.
DOI:10.1016/j.envpol.2011.10.026
|
Qi C, Liu X, Lin C, et al. 2014. Degradation of sulfamethoxazole by microwave-activated persulfate:Kinetics, mechanism and acute toxicity[J]. Chemical Engineering Journal, 249: 6–14.
|
Ryan D K, Weber J H. 1982. Fluorescence quenching titration for determination of complexing capacities and stability-constants of fulvic-acid[J]. Analytical Chemistry, 54(6): 986–990.
DOI:10.1021/ac00243a033
|
Tang J, Shi T, Wu X, et al. 2015. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 122: 154–161.
|
Toming K, Tuvikene L, Vilbaste S, et al. 2013. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment[J]. Limnology and Oceanography, 58(4): 1259–1270.
DOI:10.4319/lo.2013.58.4.1259
|
Wang Y, Zhang M, Fu J, et al. 2016. Insights into the interaction between carbamazepine and natural dissolved organic matter in the Yangtze Estuary using fluorescence excitation-emission matrix spectra coupled with parallel factor analysis[J]. Environmental Science and Pollution Research, 23(19): 19887–19896.
DOI:10.1007/s11356-016-7203-2
|
Wang Z, Cao J, Meng F. 2015. Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching[J]. Water Research, 68: 404–413.
DOI:10.1016/j.watres.2014.10.024
|
Xia X, Rabearisoa A H, Jiang X, et al. 2013. Bioaccumulation of perfluoroalkyl substances by Daphnia magna in water with different types and concentrations of protein[J]. Environmental Science & Technology, 47(19): 10955–10963.
|
Xu H, Zhong J, Yu G, et al. 2014. Further insights into metal-DOM interaction:Consideration of both fluorescent and non-fluorescent substances[J]. Plos One, 9(11): e112272.
|
Xu J, Sheng G, Ma Y, et al. 2013. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 47(14): 5298–5306.
DOI:10.1016/j.watres.2013.06.009
|
Yeh Y L, Yeh K J, Hsu L F, et al. 2014. Use of fluorescence quenching method to measure sorption constants of phenolic xenoestrogens onto humic fractions from sediment[J]. Journal of Hazardous Materials, 277: 27–33.
|
Yuan D, Guo X, Wen L, et al. 2015. Detection of Copper (Ⅱ) and Cadmium (Ⅱ) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis[J]. Environmental Pollution, 204: 152–160.
|
Zhao J, Wang Z, Ghosh S, et al. 2014. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique[J]. Environmental Pollution, 184: 145–153.
DOI:10.1016/j.envpol.2013.08.028
|
Zhou L, Wu Q, Zhang B, et al. 2016. Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China[J]. Environmental Science:Processes & Impacts, 18(4): 500–513.
|