2. 中国联合工程公司, 杭州 310052;
3. 中国计量大学计量测试工程学院, 杭州 310018;
4. 浙江大学 热能工程研究所 能源清洁利用国家重点实验室, 杭州 310027
2. China United Engineering Corporation, Hangzhou 310052;
3. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018;
4. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027
1977年, 荷兰科学家Olie等(1977)在垃圾焚烧飞灰中首次检测到了二
刘劲松等(2010)调研了2座垃圾焚烧炉, 发现其烟气二
为严格控制垃圾焚烧烟气中二
对焚烧炉现场数据进行采集分析, 选择炉排炉、流化床共10座焚烧炉进行烟气样品采集, 分别记为A、B、C、D、E、F、G、H、I、J.所有焚烧炉日处理量及烟气净化系统如表 1所示, 所有采样工况均在焚烧炉正常稳定运行条件下进行.采样过程中使用等动力污染源采样仪, 每个排放源在废气排气筒排口设置采样点一处, 采用等动力模式从烟气流中取样, 每个采样断面实际采样3次.采样装置包含玻璃纤维滤筒, 用于捕集烟尘中的二
将烟气样品进行干燥转移后, 依照美国环境保护局(USEPA)修订版方法1613对样品进行净化.样品预处理步骤如图 2所示:在样品中加入13C索提标, 放入已用甲苯索提清洗(12 h)的索提器, 索氏提取16 h, 二
仪器分析开始前需进行质量校正.注入全氟煤油, 响应稳定后, 进行仪器调谐与质量校正后分析试样.每12 h对分辨率及质量校正进行验证, 不符合要求时应重新进行调谐及质量校正.完成测定后, 取得各监测离子的色谱图, 确认全氟煤油峰离子丰度差异 < 20%, 检查是否存在干扰及2, 3, 7, 8-位有氯取代的二
10座生活垃圾焚烧炉烟囱排放的烟气平均PCDD/Fs的I-TEQ含量如图 3所示, 烟气中PCDD/Fs的浓度变化范围为0.016~0.104 ng·Nm-3(以I-TEQ计).所监测的生活垃圾焚烧炉有9座二
两座流化床炉(A和B)二
两座循环流化床焚烧炉和两座炉排炉烟气中2、3、7、8位氯取代PCDD/Fs的浓度分布如图 4所示.不同的垃圾焚烧处置条件对烟气中二
由表 1可知, 炉排炉C和D日处理量为400 t, 炉排炉E和F日处理量为500 t, 具有相同的烟气净化系统.炉C和D烟气排放的二
本文对比分析了2种容量的焚烧炉排放的二
半干法脱硫或者湿法脱硫、活性炭喷射及布袋除尘是垃圾焚烧企业中常用的烟气净化方式(潘雪君等, 2012).不同烟气净化系统炉排炉二
炉排炉G和H烟气中17种有毒二
对比10座垃圾焚烧炉烟气中二
1) 10座生活垃圾焚烧炉二
2) 10座生活垃圾焚烧炉中17种有毒二
3) 根据二
Chang M B, Lin J J, Chang S H. 2002. Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan[J]. Atmospheric Environment, 36(2): 279–286.
DOI:10.1016/S1352-2310(01)00267-9
|
Chi K H, Chang M B. 2005. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases[J]. Environmental Science & Technology, 39(20): 8023–8031.
|
Everaert K, Baeyens J, Degrève J. 2003. Entrained phase adsorption of PCDD/F from incinerator flue gases[J]. Environmental Science & Technology, 37(6): 1219–1224.
|
籍龙杰, 郭颖, 陈彤, 等. 2016. 不同热处置生活垃圾烟气中二英的排放[J]. 热能动力工程, 2016, 31(9): 94–99.
|
Ji S S, Ren Y, Buekens A, et al. 2014. Treating PCDD/Fs by combined catalysis and activated carbon adsorption[J]. Chemosphere, 102(5): 31–36.
|
Kuzuhara S, Sato H, Tsubouchi N, et al. 2005. Effect of nitrogen-containing compounds on polychlorinated dibenzo-p-dioxin/dibenzofuran formation through de Novo synthesis[J]. Environmental Science & Technology, 39(3): 795–799.
|
Lin W Y, Wu Y L, Tu L K, et al. 2010. The emission and distribution of PCDD/Fs in municipal solid waste incinerators and coal-fired power plant[J]. Aerosol & Air Quality Research, 10(6): 519–532.
|
Lin X, Jin Y, Wu H, et al. 2013. Removal of PCDD/Fs and PCBs from flue gas using a pilot gas cleaning system[J]. Journal of Environmental Sciences, 25(9): 1833–1840.
DOI:10.1016/S1001-0742(12)60292-7
|
刘劲松, 刘维屏, 巩宏平, 等. 2010. 城市生活垃圾焚烧炉周边环境空气及土壤中二英来源研究[J]. 环境科学学报, 2010, 30(10): 1950–1956.
|
Mckay G. 2002. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration:review[J]. Chemical Engineering Journal, 86(3): 343–368.
DOI:10.1016/S1385-8947(01)00228-5
|
Olie K, Vermeulen P L, Hutzinger O. 1977. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands[J]. Chemosphere, 6(8): 455–459.
DOI:10.1016/0045-6535(77)90035-2
|
潘雪君, 杨国华, 黄三, 等. 2012. 焚烧烟气中二英类控制技术研究进展[J]. 环境科学与技术, 2012(7): 122–125.
|
Telliard W. 1994. EPA 821-B94-005. Tetra-through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS[S]. Washington, DC: US EPA
|
Tuppurainen K, Aatamila M, Ruokojärvi P, et al. 1999. Effect of liquid inhibitors on PCDD/F formation.Prediction of particle-phase PCDD/F concentrations using PLS modelling with gas-phase chlorophenol concentrations as independent variables[J]. Chemosphere, 38(10): 2205–2217.
DOI:10.1016/S0045-6535(98)00439-1
|
肖佩林, 陆胜勇, 王奇, 等. 2012. 杭州城区土壤中的二恶英分布特性[J]. 浙江大学学报(工学版), 2012, 46(4): 20–28.
|
杨艳艳, 韩静磊, 青宪, 等. 2013. 珠江三角洲典型行业排放废气中PCDD/Fs污染水平[J]. 中国环境科学, 2013(s1): 186–190.
|
杨志军, 倪余文, 张智平, 等. 2005. 不同垃圾焚烧炉产生的PCDD/Fs和PCBs同类物的分布[J]. 环境化学, 2005, 24(1): 63–67.
|