2. 中国科学院生态环境研究中心, 北京 100085
2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
浑河是国家水污染防治重点流域辽河流域的主要河流之一, 浑河中游坐落着以装备制造业为主的重工业基地、东北地区重要中心城市沈阳市.工业结构性污染和城市化快速发展对浑河水环境造成了巨大压力.持续削减污染排放, 整治河流水环境, 是近年来沈阳区域水污染控制与治理的基本策略和现实需求(环境保护部环境规划院, 2017).国家科技重大水专项“十二五”“浑河中游水污染控制与水环境综合整治技术集成与示范”课题(简称“浑河中游课题”)针对难生物降解工业园区制药废水处理、污泥处理处置、城市河流水环境的湿地净化, 以及水环境评价和污染源解析等开展了大量科学调查和技术研发工作, 不仅获得了丰富的科研成果, 也反映出当前流域水污染控制与治理的难点科技问题和关键技术需求.
2 制药工业园区难降解废水处理(Refractory wastewater treatment of pharmaceutical industrial park)制药园区废水是沈阳市区域水污染治理的重点和难点之一.制药废水成分复杂、生物毒性高、具有“三致”风险(Cabrita et al., 2010);制药废水在园区经过分质处理和综合处理, 出水(尾水)COD达到300 mg·L-1标准(Gobel et al., 2007)后, 排入城市综合污水处理厂进一步处理.对沈阳制药园区尾水进行成分分析, 检测出近50种有机物, 主要包括烷烃类、苯胺类、吡啶类以及其它杂环类化合物, 多为生物难降解物质(Chelliapan et al., 2007; Yuan et al. 2013);这种园区尾水可生化性极低, 给城市综合污水处理厂的稳定运行和达标排放造成困难.如何提高制药园区尾水的可生化性、降低其生物毒性, 成为制药园区尾水处理的难点问题之一(Long et al., 2013).物化预处理是降低废水生物毒性、提高其可生化性的有效手段;高级氧化技术(AOPs)在处理药物污染物方面应用较多(Kim et al., 2009;Trovó et al., 2012), 常见的AOPs主要包括Fenton氧化法、臭氧氧化法、UV/H2O2光化学氧化法等(Amin et al., 2006; Esplugas et al., 2007;Deegan et al., 2011; 张薛等, 2015), 并取得较好效果.浑河中游课题针对沈阳制药园区尾水预处理开展了大量技术研究, 在物化预处理技术方面, 主要有UV/H2O2光化学氧化法和臭氧氧化法.选取典型污染物作为处理对象, 研究其物化预处理过程中的转化规律, 阐释反应机理, 对于优化工艺、提高处理效率具有重要指导意义.研究中选取了苯胺类化合物对乙酰氨基酚(AAP), 研究了UV/H2O2的降解动力学及反应途径, 考察了反应要素对AAP降解效果的影响, 根据反应中间产物分析, 提出UV/H2O2降解AAP的途径;还对UV/H2O2工艺的电能利用效率进行了评价.这些研究对优化AAP降解工艺技术具有参考意义, 也可为制药废水处理技术研发提供借鉴.
3 污泥处理处置与过程污染控制(Sludge treatment and disposal and process pollution control)随着污水处理能力的提升, 污泥的处理处置成为一项重要任务.相比于污水处理厂的建设速度, 污泥处理处置设施的建设滞后.“十一五”末, 沈阳市的污水处理能力已经达到近200×104 t·d-1, 日产污泥近1000 t, 却没有正规的污泥处理处置设施, 基本采用简易填埋堆存来处置, 造成严重的环境隐患(Steinle, 1993; Feng et al., 2015).在东北寒冷地区, 如何有效地处理污水处理厂污泥, 进而实现安全处理、资源化利用是一个难题.浑河中游课题开展了污泥处理处置的大量技术研究, 除了基本的生物干化技术, 还注重污泥处理过程中废气污染的控制和基于资源化目的的营养物质的固定化, 以减少温室气体排放和氮素损失.通过堆肥反应试验, 考察沸石粉和硝化抑制剂DMPP投加对污泥堆肥过程的影响与过程机制, 明确了沸石粉的投加有利于污泥堆肥中有机物的降解, 并可减少37%的氨气排放, 以及CH4和N2O的排放, 为污泥保氮堆肥处理处置、实现资源化利用提供了科学依据和应用参考.
4 复合型人工湿地的微生物作用机制(Microbiological mechanisms of composite constructed wetland)实现水环境质量改善和水生态功能提升是水污染防治工作的根本目的.在控制工农业和城市污染的基础上, 整治河流水环境、尤其是城市水环境是当前一项急迫的任务(Lake et al., 2007; Martinezpaz et al., 2014).在东北寒冷地区, 如何利用人工湿地净化低浓度污水和低污染河流水、提升水环境质量, 是一个难题.近年来人工湿地技术的研发与应用, 为水环境治理提供了多种选择, 提高湿地效率和生态景观效果是技术层面需要继续突破的难题.浑河中游课题开展了湿地的构型和运行方式设计等大量技术研究, 其中针对国内研究较少的潮汐流人工湿地, 运用分子生物学技术对潮汐流-潜流组合工艺中微生物群落分布特征进行深入分析, 应用PCR-DGGE技术识别系统中微生物群落, 对比分析群落活性与功能, 分析微生物群落结构与代谢特征变化, 明确潮汐流-潜流组合工艺系统中不同单元的菌群功能特征, 为进一步阐明人工湿地强化生物脱氮除磷的生物学机制提供了理论参考.
5 基于治理技术对策的河流水环境研究方法(River water environment research method based on governance technical countermeasures)流域水环境治理, 尤其是城市河流水环境整治是近年来国家水污染治理的重点领域(中国国务院, 2015).制定科学的河流水环境整治方案, 需要客观评判水质时空差异, 准确地追溯污染源、识别关键污染因子, 进而提出针对性技术对策和管理措施.然而, 由于流域经济社会、自然环境、治理水平等千差万别, 形成科学的治河方案并非易事.浑河中游课题开展了沈阳市经济社会发展重点区域浑南水系和蒲河小流域的治理技术和管理对策研究;在研究方法上, 采用了主成分分析、聚类分析、三维荧光光谱等方法(Borisover et al., 2009; Osburn et al., 2012), 形成了退化河流水环境和水生态质量评价、污染源解析、污染要素识别的特色研究方法.这些方法不仅在课题研究中发挥了重要作用, 还被应用于其他流域区域的河流水环境研究, 如珠江流域湖南省境内河流武水河的研究中, 科学地评价了河流水质时空差异, 准确辨识了营养物和有机物污染来源, 形成了治理技术对策和建议.
本专栏报道的是“十二五”水专项浑河中游课题技术成果的一部分, 涵盖了物化法强化废水处理工艺、矿物材料在污泥处理处置中的运用、湿地生态系统微生物生态学机理等科学问题的阐述和技术创新, 谨与水污染控制与治理方面的研究者交流分享, 供批评指正.
Amin M M, Zilles J L, Greiner J, et al. 2006. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater[J]. Environmental Science and Technology, 40(12): 3971–3977.
DOI:10.1021/es060428j
|
Borisover M, Laor Y, Parparov A, et al. 2009. Spatial and seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee) and its catchment basin[J]. Water Research, 43: 3104–3116.
DOI:10.1016/j.watres.2009.04.039
|
Cabrita I, Ruiz B, Mestre A S, et al. 2010. Removal of an analgesic using activated carbons prepared from urban and industrial residues[J]. Chemical Engineering Journal, 163: 249–255.
DOI:10.1016/j.cej.2010.07.058
|
Chelliapan S, Wilby T, Sallis P J. 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics[J]. Water Research, 40: 507–516.
DOI:10.1016/j.watres.2005.11.020
|
Deegan A M, Shaik B, Nolan K, et al. 2011. Treatment options for wastewater effluents from pharmaceutical companies[J]. International Journal of Environmental Science and Technology, 8(3): 649–666.
DOI:10.1007/BF03326250
|
Esplugas S, Bila D M, Krause L G, et al. 2007. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 149(3): 631–642.
DOI:10.1016/j.jhazmat.2007.07.073
|
Feng L, Luo J, Chen Y. 2015. Dilemma of sewage sludge treatment and disposal in China[J]. Environmental Science and Technology, 49(8): 4781–4782.
DOI:10.1021/acs.est.5b01455
|
Gobel A, McArdell C S, Joss A, et al. 2007. Fate of sulfonamides, macrolides and trimethoprim in different wastewater treatment technologies[J]. Science of the Total Environment, 372: 361–371.
DOI:10.1016/j.scitotenv.2006.07.039
|
环境保护部环境规划院. 2017. "十三五"生态环境保护规划[M]. 北京: 中国环境出版社: 5.
|
Kim I, Tanaka H, Roig B, et al. 2009. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 35(5): 793–802.
DOI:10.1016/j.envint.2009.01.003
|
Lake P S, Bond N, Reich P. 2007. Linking ecological theory with stream restoration[J]. Freshwater Biology, 52(4): 597–615.
DOI:10.1111/fwb.2007.52.issue-4
|
Long E R, Dutch M, Weakland S, et al. 2013. Quantification of pharmaceuticals, personal care products, and perfluoroalkyl substances in the marine sediments of Puget Sound, Washington, USA[J]. Environmental Toxicology and Chemistry, 32: 1701–1710.
DOI:10.1002/etc.v32.8
|
Martinezpaz J M, Pellicermartinez F, Colino J. 2014. A probabilistic approach for the socioeconomic assessment of urban river rehabilitation projects[J]. Land Use Policy, 36: 468–477.
DOI:10.1016/j.landusepol.2013.09.023
|
Osburn C L, Handsel L T, Mikan M P, et al. 2012. Fluorescence tracking of dissolved and particulate organic matter quality in a river dominated estuary[J]. Environmental Science and Technology, 42: 6644–6649.
|
Steinle E. 1993. Sludge treatment and disposal systems for rural areas in Germany[J]. Water Science and Technology, 27(9): 159–171.
DOI:10.2166/wst.1993.0190
|
Trovó A G, Pupo Nogueira R F, Agüera A, et al. 2012. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species[J]. Water Research, 46(16): 5374–5380.
DOI:10.1016/j.watres.2012.07.015
|
Yuan S, Jiang X, Xia X, et al. 2013. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China[J]. Chemosphere, 90: 2520–2525.
DOI:10.1016/j.chemosphere.2012.10.089
|
张薛, 赵璇. 2015. UV/H2O2氧化处理水中去污剂[J]. 环境科学学报, 2015, 35(3): 750–755.
|
中国国务院. 2015. 水污染防治行动计划[M]. 北京: 人民出版社: 31.
|