二
钢铁的基本生产工艺流程:首先利用烧结工艺和炼焦工艺将铁矿石和焦煤转变为烧结矿和焦炭等原料, 然后利用高炉炼铁工艺将其制成生铁.下一步再以生铁为原料, 利用不同炼钢炉将其冶炼成钢.之后, 钢被铸成钢锭或连铸胚形状, 送到轧钢机进行轧制加工, 或经过锻造, 最终成为各种形状的钢材.目前, 人们对二
我国钢铁行业二
基于钢铁行业二
实验所用的材料均来自国内某钢铁厂, 包括各种飞灰、烧结生料和轧钢污泥.其中飞灰包括高炉一次灰、高炉二次灰、电炉灰、转炉灰和烧结灰, 而轧钢污泥包括热轧污泥、冷轧污泥和连铸污泥.轧钢污泥是轧钢废水在经过污水处理后所产生的固体沉淀物质, 污泥中主要含有轧钢过程中用水喷淋冷却轧机轧辊辊道和轧制钢材的表面产生的氧化铁皮, 机械设备上的油类物质, 固体杂质等废弃物.高炉一次灰是由重力除尘器捕集的干粉尘, 粒径相对较大, 而高炉二次灰是由文氏管捕集的泥浆状粉尘经过滤后形成的泥饼, 其余的飞灰则均收集自各生产过程的静电除尘器中.所有飞灰和轧钢污泥均在105 ℃烘箱进行24 h干燥处理.烧结生料则由铁矿石(68.6%)、烧结返矿(15.0%)、焦炭(3.8%)、石灰石(3.0%)、熟石灰(3.0%)、白云石(3.0%)、蛇纹石(1.0%)、水(2.5%)和氯化铜(0.1%)组成.由于烧结生料生成二
本次研究采用小型管式炉完成污泥焚烧和飞灰及烧结生料从头合成二
为了尽可能拟合现场实验条件, 不同物料所采用的实验工况有所差异, 具体详见表 1.3种污泥焚烧实验均在850 ℃, 标准空气的工况下完成, 而飞灰和烧结物料从头合成二
实验中, 吸附在XAD-Ⅱ树脂和甲苯中的气相二
钢铁行业不同物料二
对比3种高温焚烧的轧钢污泥, 其同样展示了完全不同的二
如表 2所示, 对比5种飞灰的元素分布可以发现, 烧结飞灰的氯含量远远高于其余4种飞灰.其元素含量达到24.8%, 而其余4种飞灰中氯元素含量最高的是电炉灰, 其含量只有1.1%.众所周知, 二
如表 3所示, 3种轧钢污泥和烧结生料的PCDF/PCDD比值介于7和8之间, 而5种飞灰则相对较低.值得注意的是, 除烧结飞灰外, 其余飞灰的PCDF/PCDD比值都小于2, 其中转炉飞灰该比值略小于1.这说明除转炉飞灰外, 其余物料二
在本研究中, 主成分分析被采用以研究不同样品同系物组分布的相似和异同, 从而探究不同物料生成二
由主成分分析可知, 3种污泥和烧结生料的二
众多研究关注于2, 3, 7, 8-PCDD/F的生成和分布规律, 这是由于2, 3, 7, 8位同时被氯原子取代的PCDD/F具有毒性.在本研究中, 采用Hagenmaier表来进行17种2, 3, 7, 8-PCDD/F同系物之间的关联分析.二
通过分析所有样品的Hagenmaier同系物分布可以发现, 2, 3, 7, 8-TCDD和其他2, 3, 7, 8-PCDD有较强的正相关(r):2, 3, 7, 8-TCDD (1.00), 1, 2, 3, 7, 8-PeCDD(五氯代二
本研究同样计算了2, 3, 7, 8-TCDF (四氯代呋喃)与各有毒二
国外学者的研究表明, 7种PCDD同系物包括1, 3, 6, 8-, 1, 3, 7, 9-TCDD, 1, 2, 4, 6, 8+1, 2, 4, 7, 9-, 1, 2, 3, 6, 8-, 1, 2, 3, 7, 9-PeCDD, 1, 2, 3, 4, 6, 8-HxCDD以及两种PCDF同系物1, 2, 3, 4+1, 2, 3, 6+1, 2, 3, 8+1, 4, 6, 9+1, 6, 7, 8+2, 3, 6, 8-TCDF和2, 4, 6, 8-TCDF极易由冷凝的氯酚或氯苯氧自由基直接合成而来, 例如2, 4, 6-三氯苯酚, 这些PCDD/F的生成路径被统称为氯酚路径(Luijk et al., 1994; Addink et al., 1995; Ryu et al., 2005).通过分析所有样品的氯酚路径同系物分布可得(图 4), 除1, 2, 3, 4+-TCDF外, 1, 3, 6, 8-TCDD与其他所有的氯酚路径同系物均有很强的正相关性.其中1, 2, 4, 6, 8+1, 2, 4, 7, 9-, 1, 2, 3, 6, 8-, 1, 2, 3, 7, 9-PeCDD, 1, 2, 3, 4, 6, 8-HxCDD这4种同系物展示出与1, 3, 6, 8-TCDD的超强相关性, 其r值均大于0.9, 而1, 3, 7, 9-TCDD和2, 4, 6, 8-TCDF的r值也均大于0.7.这说明氯酚路径在钢铁行业的二
通过PCDD/F的同系物相互关联性分析可以推测不同物料二
本文借助实验室小型管式炉, 系统地探究了钢铁行业不同物料生成二
1) 钢铁行业的不同物料展示了完全不同的二
2) 利用主成分分析, 对比不同物料二
3) 有毒2, 3, 7, 8-PCDD之间有强相关性, 而有毒2, 3, 7, 8-PCDF之间的相关性不明显, 推测出一条钢铁行业的有毒二
Addink R, Cunbben P, Olie K. 1995. Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans on fly ash from precursors and carbon model compounds[J]. Carbon, 33(10): 1463–1471.
DOI:10.1016/0008-6223(95)00100-R
|
Altarawneh M, Dlugogorski B, Kennedy E M, et al. 2009. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)[J]. Progress in Energy and Combustion Science, 3(35): 245–274.
|
Buekens A, Stieglitz L, Hell K, et al. 2001. Dioxins from thermal and metallurgical processes:recent studies for the iron and steel industry[J]. Chemosphere, 42(5): 729–735.
|
Fujimori T, Takaoka M, Takeda N. 2009. Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash[J]. Environmental Science & Technology, 43(21): 8053–8059.
|
Gullett B K, Sarofim A F, Smith K A, et al. 2000. The role of chlorine in dioxin formation[J]. Process Safety and Environmental Protection, 1(78): 47–52.
|
Huang H, Buekens A. 1995. On the mechanisms of dioxin formation in combustion processes[J]. Chemosphere, 9(31): 4099–4117.
|
刘国瑞, 郑明辉. 2013. 非故意产生的持久性有机污染物的生成和排放研究进展[J]. 中国科学:化学, 2013, 3(1): 265–278.
|
Lu S, Yan J, Li X, et al. 2007. Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator[J]. Journal of Environmental Sciences, 19(6): 756–761.
DOI:10.1016/S1001-0742(07)60126-0
|
Luijk R, Akkerman D, Slot P, et al. 1994. Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon[J]. Environmental Science & Technology, 28(2): 312–321.
|
Nakano M, Hosotani Y, Kasai E. 2005. Observation of behavior of dioxins and some relating elements in iron ore sintering bed by quenching pot test[J]. ISIJ International, 45(4): 609–617.
DOI:10.2355/isijinternational.45.609
|
Nakano M, Morii K, Sato T. 2009. Factors accelerating dioxin emission from iron ore sintering machines[J]. ISIJ International, 49(5): 729–734.
DOI:10.2355/isijinternational.49.729
|
Ooi C T, Lu L. 2011. Formation and mitigation of PCDD/Fs in iron ore sintering[J]. Chemosphere, 85(3): 291–299.
DOI:10.1016/j.chemosphere.2011.08.020
|
Ryu J, Mulholland J, Kim D, et al. 2005. Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors:Comparison with municipal waste incinerator data[J]. Environmental Science & Technology, 12(39): 4398–4406.
|
Stieglitz L, Bautz H, Roth W, et al. 1997. Investigation of precursor reactions in the de-novo-synthesis of PCDD/PCDF on fly ash[J]. Chemosphere, 34(5): 1083–1090.
|
Sun Y, Liu L, Fu X, et al. 2016. Mechanism of unintentionally produced persistent organic pollutant formation in iron ore sintering[J]. Journal of Hazardous Materials, 306(10): 41–49.
|
Suzuki K, Kasai E, Aono T, et al. 2004. De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed[J]. Chemosphere, 54(1): 97–104.
DOI:10.1016/S0045-6535(03)00708-2
|
王存政, 李建萍, 李烨. 2011. 我国钢铁行业二英污染防治技术研究[J]. 环境工程, 2011, 5(1): 75–79.
|
Xu S, Chen T, Zhang M, et al. 2018. Hot rolling sludge incineration:Suppression of PCDD/Fs by spent anion exchange resins[J]. Journal of Hazardous Materials, 1(343): 149–156.
|
Yan M, Li X, Chen T, et al. 2010. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs[J]. Journal of Environmental Sciences, 22(10): 1637–1642.
DOI:10.1016/S1001-0742(09)60300-4
|
Yang Y, Ryu C, Goodfellow J, et al. 2004. Modelling waste combustion in grate furnaces[J]. Process Safety and Environmental Protection, 82(3): 208–222.
DOI:10.1205/095758204323065975
|
俞勇梅, 何晓蕾, 李咸伟. 2009. 烧结过程中二英的排放和生成机理研究进展[J]. 世界钢铁, 2009, 6(1): 1–6.
|
Zhang M, Buekens A. 2016. De novo synthesis in iron ore sintering[J]. International Journal of Environment & Pollution, 60(1): 111–135.
|
张苏, 董慧芹, 王文利. 2015. 钢铁行业二英减排技术分析[J]. 能源与环境, 2015, 6(1): 70–71.
|