环境科学学报  2020, Vol. 40 Issue (10): 3574-3581
中国水环境微塑料污染现状及其潜在生态风险    [PDF全文]
张子琪1, 高淑红1, 康园园1, 罗高扬1, 陈珂1, 梁斌1, 王爱杰1,2    
1. 哈尔滨工业大学(深圳)土木与环境工程学院, 深圳 518055;
2. 哈尔滨工业大学环境学院, 城市水资源与水环境国家重点实验室, 哈尔滨 150090
摘要:微塑料在水环境中的广泛存在导致的环境污染问题引起了全世界的关注.微塑料对水生生物的生长活动、生命健康产生威胁,同时也对生态系统的功能产生影响.中国是世界上十大塑料制品生产和消费国之一,近年来,我国在多个水环境中发现了微塑料的踪迹.本文对中国几种水环境(污水处理厂、淡水、海洋)中微塑料的污染情况进行了总结,并对微塑料产生的影响,特别是微塑料产生的潜在生态风险进行了介绍.现阶段水环境中微塑料的研究大多数是针对于某一特定水域,缺少微塑料在不同水域环境中迁移赋存的探究,且对于微塑料生态毒性的研究还很少,为此我们提出了未来水环境中针对微塑料研究的建议与展望.
关键词水环境    微塑料污染    生物威胁    生态风险    
Current status of microplastics contamination in China's water environment and its potential ecological risks
ZHANG Ziqi1, GAO Shuhong1, KANG Yuanyuan1, LUO Gaoyang1, CHEN Ke1, LIANG Bin1, WANG Aijie1,2    
1. School of Civil&Environmental Engineering, Harbin Institute of Technology(Shenzhen), Shenzhen 518055;
2. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090
Received 11 September 2020; received in revised from 14 September 2020; accepted 14 September 2020
Abstract: The widespread occurrence of microplastics in the water environment which resulted in environmental contamination issues has attracted worldwide attention. The existence of microplastics poses a threat to the growth and health of aquatic organisms, and also affects the function of the ecosystems. China is one of the top ten countries producing and consuming plastic products in the world. For the past few years, Chinese researchers have found microplastics in several water environments including marine environment, fresh water, and wastewater treatment plants. In this review, we have summarized the microplastics contamination in several water environments consisting of wastewater treatment plants, freshwater, and marine environment in China. Meanwhile, we introduced the adverse impact of microplastics, especially the potential ecological risks exposed to the ecosystem. At this stage, most of the research on microplastics in the water environment focuses on a certain water environment point. Research on the migration and pollution of microplastics in different connected water environments is still lacking, and there are few studies on the ecotoxicity of microplastics. Therefore, we also put forward suggestions and perspectives for future research regarding microplastics in the water environment.
Keywords: water environment    microplastic contamination    biological threats    ecological risk    
1 引言(Introduction)

塑料是一种有机高分子聚合物, 全球年产量已高达3亿多吨.但作为部分可再生回收的合成材料, 塑料的回收再利用率并不高, 欧洲约为30%, 中国约为25%, 美国低于10%(Geyer et al., 2017).塑料产品的大量使用和塑料废弃物的不善处理导致塑料污染日益严重, 其中, 直径小于5 mm的塑料颗粒被称为微塑料(Thompson et al., 2009).微塑料由于其体积小、难被降解等性质, 能够在环境中长距离运输并持久存在.如今在水体(Alimi et al., 2018)、大气(田媛等, 2020)、土壤(Nizzetto et al., 2016)、食品(Alexander et al., 2016)、饮用水(Kosuth et al., 2018; Schymanski et al., 2018)甚至人体(Wright and Kelly, 2017)中都发现了微塑料的踪迹, 影响着生物生长与人类的健康安全, 塑料污染已经成为当今世界亟待解决的全球性问题.

研究发现, 水环境中的微塑料主要来源于人们的生活、生产活动.海洋渔业、工业生产等使用的塑料制品在紫外线辐射、机械磨损和波浪冲击等作用下产生的微小塑料碎片, 对海洋以及近岸沙滩造成了污染(Andrady, 2011; Mai et al., 2018; Alimi et al., 2018).同时, 大量来自陆地的微塑料被运输到海洋, 这也成为海洋环境中微塑料的主要来源(Auta et al., 2017).水环境中检测到的微塑料的主要类型有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)等, 其中PET广泛用于合成服装材料, PE用于个人护理用品, 如身体、面部磨砂膏, 以及用于食品包装膜、水瓶等(Cheung and Fok, 2017, Lares et al., 2018; Mintenig et al., 2017; Ziajahromi et al., 2017).纤维是环境中可以检测到的最常见的微塑料形态, 此外还有碎片、薄膜、颗粒状等.

微塑料在水环境中的大量存在, 引起了研究者们对其毒性和生态风险的关注.微塑料对水生态安全产生的影响主要体现在3个方面.首先, 微塑料比表面积大、吸附能力强, 极易吸附环境中的多氯联苯(PCBs)、多环芳烃(PAHs)等持久性有机污染物与重金属(Hirai et al., 2011), 增强污染与毒性(许霞等, 2018).其次, 微塑料体积小且具有很强的稳定性和持久性, 能够在水环境中长期存在(Andrady, 2011), 且易被生物误食, 并沿食物链进入人体内(Gross, 2015).研究表明, 在水生无脊椎动物中, 各种浮游动物已经显示出能够摄取1.7~30.6 μm的聚苯乙烯微珠(Gross, 2015).此外, 微塑料作为一种耐久的基质还可以成为微生物良好的载体, 被微生物定植并长距离运输, 表面形成生物膜, 其中包括潜在的致病性和有害藻华物种, 成为致病/有害生物在生态系统的活动载体(Zettler et al., 2013; Maso et al., 2003).

在这篇文章中, 我们对中国几种水环境中微塑料的污染情况进行了汇总, 并对微塑料存在的影响, 特别是微塑料产生的潜在生态风险进行了介绍.尽管近几年人们已经意识到了微塑料污染的严重性, 并有多国学者陆续开展了关于微塑料浓度、性质的研究, 但大多数研究都是针对于某一水域, 对于微塑料在相互连接的不同水环境中赋存归趋的报告还非常少, 缺少微塑料在整体水环境中污染情况的探究, 且尚不明确应如何有效去除水中的微塑料.此外, 微塑料毒性的研究大多尚在实验室阶段, 并不能完全代表自然水环境中微塑料的污染危害, 且对于微塑料生态毒性的研究还很少, 在未来应更多的聚焦于微塑料的微观干扰和对生态系统的长期影响.

2 中国不同水环境中微塑料的污染现状(Current situation of microplastics contamination in different water environments in China) 2.1 海洋环境

海洋是河流的汇集地, 研究发现, 海洋也成为了微塑料的汇集地.当陆地微塑料被释放到自然水环境中, 它们中的大多数将通过河流被输送到海洋中(Li et al., 2018).越来越多的研究表明海洋中的微塑料污染严重, 并对海洋生态系统造成诸多负面影响.从赤道大西洋(Sul et al., 2013)到极地(Lusher et al., 2015; Waller et al., 2017), 从海洋表层水(Law et al., 2014; Cozar et al., 2017)到深海(Van Cauwenberghe et al., 2013; Taylor et al., 2016; Zhang et al., 2020b), 研究者们都发现了微塑料的存在.

我国被认为是塑料排放量最大的国家, 每年进入海洋的塑料垃圾达882万公吨, 占总量的27.7%(Jambeck et al., 2015).为切实探究我国海洋中微塑料的污染情况, 近年来我国开展了关于海洋中微塑料污染的研究, 主要集中在黄渤海海域、东部沿海以及南海海域.2014年, Zhao等(2014)首次对东海海域中的悬浮微塑料进行了定量研究, 发现海水中微塑料的浓度为(0.167±0.138)个· m-3, 并证实了河流是海洋中微塑料的重要来源之一.对微塑料进行成分分析发现, 渤海表层水((0.33±0.34)个· m-3)中微塑料的主要类型有聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS), 并且对于小于1 mm的微塑料, 聚丙烯(PP)的含量最高, 预测海洋中可能存在更多未被检测到的、直径较小的PP废料(Zhang et al., 2017b).在南海海域的研究中也发现,小颗粒的微塑料(0.02~0.3 mm)占检测总量的92%,平均浓度为(2569±1770)个· m-3,且随着粒径的减小,表层水中微塑料的平均浓度呈指数增长(Cai et al., 2018).对于微塑料的来源, 通过对渤海(0.065个· m-3)、黄海(0.009个· m-3)海域以及附近沙滩中的微塑料污染进行研究, 发现海洋中微塑料最有可能的来源是钓鱼线、PE绳网与PS泡沫容器(Mai et al., 2018).同时, 内海(渤海)的微塑料浓度远远高于公海(黄海), 表明来自内陆或沿海活动的人为塑料废弃物可能是海洋中微塑料的主要来源.此外还有学者对香港海域(0.051~27.909个· m-3)(Tsang et al., 2017)、天津近岸海域(210~1170个· m-3)(白璐等, 2020)、广东东部沿海(8895个· m-3)(Zhang et al., 2020a)中的微塑料污染进行了研究.

海洋环境中的微塑料污染广泛且长久存在, 大颗粒微塑料会不断破碎分解为更小粒径的微塑料, 使得海洋中小颗粒微塑料的数量不断增加, 这对海洋中的生物产生了更大影响, 更易被生物吞食摄入并在体内迁移(Devriese et al., 2015; Kokalj et al., 2018), 对生物体的多个组织产生损伤(Lei et al., 2018), 且较小的微塑料在生物体内具有更长的保留时间(Jeong et al., 2016), 更易附着在生物组织中(曹露等, 2018), 造成更高的毒性.此外, 由于采样、处理、检测方法尚未统一, 不同实验数据间的可比性小, 现阶段我们难以对不同海域中微塑料的污染情况进行对比评价.

2.2 淡水及小水体环境

微塑料不仅广泛存在与海洋中, 在湖泊、河流、水库中也发现了微塑料的踪迹(Mani et al., 2015; Baldwin et al., 2016; Anderson et al., 2017; Zhang et al., 2017a).湖泊可以作为微塑料的临时或长期汇集池, 河流被认为是各种微塑料进入海洋的主要运输通道(Lebreton et al., 2017; Zhao et al., 2014; Horton et al., 2017).

现阶段我国关于淡水中微塑料的研究还相对较少, 主要集中在长江流域、珠江流域以及个别城市的内陆水域, 同时随人口密度与人类活动增多, 淡水系统中的微塑料污染也更加严重.Wang等(2017)研究了武汉市地表水((1660.0±639.1)~(8925±1591)个· m-3)中微塑料的污染水平, 发现越靠近城市中心, 微塑料浓度越高, 污染越为严重, 且纤维是最常见的微塑料形状.在对三峡库区长江干流地表水(1597~12611个· m-3)和沉积物(25~300个· kg-1湿重)中微塑料污染情况的研究中发现, 地表水在城市区域的污染相对严重, 且以密度较低的微塑料(如PP、PE)为主;而在乡村区域, 河床沉积物中的微塑料浓度较高, 且多为高密度微塑料, 最常见的类型为PS(Di and Wang, 2018).对于珠江流域广州市河道断面(19860个· m-3)与河口(8902个· m-3)中的微塑料, 发现靠近工业园区或物流园区采样点的微塑料浓度最高, 说明人类活动可能是珠江微塑料污染加剧的重要原因之一, 并且城市污水可能是珠江微塑料的主要来源, 城市支流可能是微塑料的滞留系统(Yan et al., 2019).

图 1 中国水环境微塑料污染研究的主要分布情况 Fig. 1 Main distribution of microplastics contamination in China′s water environment

在对藏北四岭错盆地中湖泊(Zhang et al., 2016)的湖滨沉积物((8±14)~(563±1219)个· m-2)、青海湖(Xiong et al., 2018)的表层水(3090~757500个· km-2)与沉积物((50±50)~(1292±582)个· m-2)的研究发现, 即使在人口密度相对较低的地区, 由于旅游业以及周边河流的输入, 偏远地区的内陆湖泊也成为了微塑料的汇集地, 可见微塑料在水环境中已经无处不在.

2.3 污水处理厂

有文献报道, 污水处理厂排放是微塑料进入自然环境的重要途径之一(Talvitie et al., 2015; Mccormick et al., 2014; Carr et al., 2016).人们日常生活中使用的微塑料或塑料制品磨损、破裂形成的塑料微粒以原污水的形式运输到污水处理厂(Chang, 2015; Fendall and Sewell, 2009), 经过多级污水处理工艺后, 大多数的微塑料被截留在污泥中, 剩余微塑料则跟随污水厂出水排放到自然水环境中, 如河流、海洋等.现阶段已有美国(Mason et al., 2016)、芬兰(Talvitie et al., 2015)、英国(Murphy et al., 2016)等多国学者对污水处理厂中微塑料的浓度、物理特征等进行了研究.Murphy等(2016)研究发现苏格兰格拉斯哥一个大型二级污水处理厂每天向水体中排放约6500万个微塑料.Cheung和Fok(2017)预计平均每年有209.7万亿个微塑料颗粒(306.9 t)排放到中国大陆的水生环境中, 其中80%以上来自污水处理厂.

近几年国内关于城市污水处理厂中微塑料的研究主要集中在北京(Yang et al., 2019)、武汉(Liu et al., 2019)、厦门(汪文玲等, 2019)、上海(白濛雨等, 2018; 贾其隆等, 2019)少数几个城市, 主要包括微塑料在污水处理厂中的物理性质以及赋存归趋.汪文玲等(2019)对厦门市筼筜污水处理厂进出水中的微塑料进行了研究, 结果表明初级处理出水和二级处理出水的去除率分别为35.99%、80.97%, 但由于该污水处理厂处理水量约为26万m3 · d-1预计每天向厦门西海域中排入的微塑料可达9.72×104个.可见虽然污水处理厂对微塑料具有较高的截留率, 但由于污水排放量巨大, 污水处理厂成为自然水环境中微塑料的重要来源.武汉市某污水处理厂中的微塑料主要为纤维和碎片颗粒, 主要成分为PA, 占微塑料总数的54.8%, 表明微塑料颗粒主要来源于衣物的洗涤和聚合物的制造加工(Liu et al., 2019).贾其隆等(2019)对上海市两个大型污水处理厂的研究发现, 一级污水处理工艺对微塑料的去除率可以达到70%~80%, 且污水厂中的微塑料类型以PET、PA、PE和PP为主, 这与自然水环境中的微塑料类型相一致(Koelmans et al., 2019).

我国对于污水处理厂中微塑料排放的数据还不全面, 且主要进行了微塑料污染浓度、性质的研究, 缺乏对微塑料减量排放控制技术的研究.如何减少污水厂微塑料排放?哪一种污水处理工艺对微塑料的去除效果更好?未来应该如何进行工艺改进?这些都是需要进一步探索解决的问题.

2.4 中国水环境中微塑料污染现状总结

现阶段我国的研究主要集中在黄渤海海域、东海海域、南海海域以及长江流域、珠江流域, 对于不同水环境中微塑料污染情况的研究还比较分散, 且很少有研究报道了微塑料在不同水域中的迁移赋存.在未来应加强对微塑料自进入污水处理厂开始的、各个迁移环节的连续式研究, 逐步形成“点-线-面”的研究模式, 将微塑料的研究从各个水环境扩展到整个水循环系统, 更好的评估中国水环境中微塑料的污染情况, 并为微塑料在全球循环中的探究提供基础数据.

3 微塑料的危害(Detrimental effect of microplastics) 3.1 微塑料的生物毒性

已有大量研究表明, 水环境中微塑料的存在会对水生生物产生危害.微塑料由于体积小, 易被生物吞食并进入体内, 引起肠道损伤(Lei et al., 2018), 干扰生物进食、扰乱生物体内能量流动(Xu et al., 2017; Wright et al., 2013), 并对生物构成生长威胁(Murphy and Quinn, 2018)、生殖威胁(Sussarellu et al., 2016; Lee et al., 2013), 甚至引起生物死亡(Lee et al., 2013).此外, 由于微塑料比表面积大, 极易吸附重金属、有机污染物等有毒物质, 且微塑料常被加入各种添加剂, 使得微塑料成为一种复合污染物, 这种共暴露毒性会对生物产生更多威胁, 如抑制藻类生长、影响贻贝的胚胎发育(Capolupo et al., 2020)、引起皮肤异常(Rainieri et al., 2018)、氧化应激(Qiao et al., 2019)等.

人类也正在从空气、饮用水和食物中摄入微塑料(Yang et al., 2015; Schymanski et al., 2018; Dris et al., 2015).悬浮的微塑料会随空气进入人类呼吸系统, 食用受污染食物(食盐、饮用水、海鲜等)也会使得更多微塑料进入胃肠道.研究预计, 每人每年通过食盐、饮用水和呼吸进入人体的微塑料分别为(0~7.3)×104个, (0~4.7)×103个和(0~3.0)×107个(Zhang et al., 2020c).虽然现阶段还没有明确的微塑料对于人类健康影响结果的报告, 但研究者们普遍认为微塑料对人体具有潜在负面影响(Wright and Kelly, 2017; Zhang et al., 2020c).例如, 微塑料能够在人体内迁移并积累, 塑料纤维可以穿透肺深部, 过多接触会使得呼吸系统易出现症状, 甚至增加癌症发病率(Prata, 2018; Zhang et al., 2020c).

但现阶段关于微塑料毒性的研究大多数还在实验室初始研究阶段, 使用购买的标准微塑料进行定性、定量研究, 并不能反映出实际水环境中微塑料的性质与生态毒性特征, 且实验中的环境条件也不能反映真实水环境中的复杂状况, 无法体现其他污染物与微塑料间相互作用对生物产生的真实毒性.

3.2 微塑料对生态系统功能的影响

微塑料的存在不仅威胁着生物的生命健康, 也对生态系统产生了微观影响.微塑料作为一种耐久的基质可以成为微生物的载体, 周围水环境中的微生物在其表面定植并形成生物膜(Zettler et al., 2013), 例如微塑料表面的塑料分解菌和病原体等(Mccormick et al., 2014).因此, 微塑料可以作为包括病原菌在内的多种细菌的运输工具, 将它们运送到新环境中去, 影响生态系统的正常功能, 甚至危害生态环境的安全(Raju et al., 2018).

微塑料的存在还会对微生物的生态功能产生微观干扰(Arias-Andres et al., 2018).例如, 滨海沉积物中的微塑料影响了周围微生物群落的组成和氮循环过程, 聚氨酯泡沫(PUF)和聚乳酸(PLA)微塑料促进了硝化与反硝化过程, 而聚氯乙烯(PVC)则抑制了这两个过程(Seeley et al., 2020).一些实验也表明, 废水处理过程中的微塑料也对微生物产生了影响, 导致微生物生长和生存能力受到抑制, 进而影响了化学反应过程(Zhang et al., 2020d).例如, 聚氯乙烯微塑料(PVC)浸出的有毒双酚A可有效抑制废水活性污泥的厌氧消化过程, 并使废水活性污泥中微生物的细胞壁和细胞外聚合物质破裂(Wei et al., 2019).此外, PVC也对厌氧颗粒污泥的COD去除率具有显著抑制作用(13.2%~35.5%), 并导致甲烷产量下降(11.0%~32.3%)、短链脂肪酸积累增加(40.3%~272.7%)(Zhang et al., 2020d).

总结来说, 虽然现阶段已经陆续开展了较多有关微塑料对环境的污染以及对生物毒性作用的探究, 但关于微塑料如何影响生态系统功能的研究还很少, 且缺乏长期的实验研究.微塑料在环境中长久存在的特性, 使得今后亟需进一步探究微塑料产生的微观干扰以及长期危害.

4 结论(Conclusions)

1) 我国对于微塑料的研究还在起步阶段, 为更好的对水环境中微塑料的污染情况进行评估, 应继续进行多水域、多环境的连续式调查研究, 逐步形成“点-线-面”的研究模式.

2) 目前微塑料的处理主要是随污泥一起焚烧, 对于污水中的微塑料还没有特定的去除处理工艺, 以至于大量的微塑料通过污水处理厂进入自然水环境中.今后需要对污水厂中微塑料的去除技术进行研究, 根据微塑料在污水处理厂中的赋存规律对相关工艺进行调整升级, 在保证污水处理效果的前提下尽可能提高微塑料的截留去除率.

3) 现阶段微塑料毒性的研究主要是在实验室阶段, 对于实际复杂环境中微塑料毒性效应的研究尚有欠缺, 实验室结果不能反映出复杂环境因素以及其他物质对微塑料污染的影响与协同作用, 实际环境中微塑料的毒性作用有待评估.微塑料对生态系统功能的影响也十分重要, 但目前的研究报道还非常少, 且缺乏长期研究.

4) 未来应继续加强微塑料检测技术的研究, 规范微塑料的处理与检测方法, 提高数据质量以及不同研究之间的可比性.

参考文献
Alexander J, Barregard L, Bignami M, et al. 2016. Presence of microplastics and nanoplastics in food, with particular focus on seafood[J]. EFSA Journal, 14(6): 30.
Alimi O S, Budarz J F, Hernandez L M, et al. 2018. Microplastics and nanoplastics in aquatic environments:Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 52(4): 1704-1724.
Anderson P J, Warrack S, Langen V, et al. 2017. Microplastic contamination in Lake Winnipeg, Canada[J]. Environmental Pollution, 225: 223-231. DOI:10.1016/j.envpol.2017.02.072
Andrady A L. 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605. DOI:10.1016/j.marpolbul.2011.05.030
Arias-Andres M, Kettner M T, Miki T, et al. 2018. Microplastics:New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems[J]. Science of the Total Environment, 635: 1152-1159. DOI:10.1016/j.scitotenv.2018.04.199
Auta H S, Emenike C U, Fauziah S H. 2017. Distribution and importance of microplastics in the marine environment:A review of the sources, fate, effects, and potential solutions[J]. Environment International, 102: 165-176. DOI:10.1016/j.envint.2017.02.013
Baldwin A K, Corsi S R, Mason S A. 2016. Plastic Debris in 29 Great Lakes Tributaries:Relations to Watershed Attributes and Hydrology[J]. Environmental Science & Technology, 50(19): 10377-10385.
白璐, 刘宪华, 陈燕珍, 等. 2020. 天津近岸海域微塑料污染现状分析[J]. 环境化学, 39(5): 1161-1168.
白濛雨, 赵世烨, 彭谷雨, 等. 2018. 城市污水处理过程中微塑料赋存特征[J]. 中国环境科学, 38(5): 1734-1743.
Cai M G, He H X, Liu M Y, et al. 2018. Lost but can't be neglected:Huge quantities of small microplastics hide in the South China Sea[J]. Science of the Total Environment, 633: 1206-1216. DOI:10.1016/j.scitotenv.2018.03.197
Capolupo M, Sorensen L, Jayasena K D, et al. 2020. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms[J]. Water Research, 169: 11.
Carr S A, Liu J, Tesoro A G. 2016. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water Research, 91: 174-182. DOI:10.1016/j.watres.2016.01.002
Chang M. 2015. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions[J]. Marine Pollution Bulletin, 101(1): 330-333. DOI:10.1016/j.marpolbul.2015.10.074
Cheung P K, Fok L. 2017. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China[J]. Water Research, 122: 53-61. DOI:10.1016/j.watres.2017.05.053
Cozar A, Marti E, Duarte C M, et al. 2017. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation[J]. Science Advances, 3(4): 8.
曹露, 李永, 梁瑞峰, 等. 2018. 微塑料颗粒对虹鳟免疫基因表达的影响[J]. 环境科学学报, 38(8): 3347-3352.
Devriese L I, Van Der Meulen M D, Maes T, et al. 2015. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area[J]. Marine Pollution Bulletin, 98(1/2): 179-187.
Di M X, Wang J. 2018. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 616-617: 1620-1627. DOI:10.1016/j.scitotenv.2017.10.150
Dris R, Gasperi J, Rocher V, et al. 2015. Microplastic contamination in an urban area:a case study in Greater Paris[J]. Environmental Chemistry, 12(5): 592-599. DOI:10.1071/EN14167
Fendall L S, Sewell M A. 2009. Contributing to marine pollution by washing your face:Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 58(8): 1225-1228. DOI:10.1016/j.marpolbul.2009.04.025
Geyer R, Jambeck J R, Law K L. 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): 5.
Gross M. 2015. Oceans of plastic waste[J]. Current Biology, 25(3): R93-R96. DOI:10.1016/j.cub.2015.01.038
Hirai H, Takada H, Ogata Y, et al. 2011. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 62(8): 1683-1692. DOI:10.1016/j.marpolbul.2011.06.004
Horton A A, Walton A, Spurgeon D J, et al. 2017. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 586: 127-141. DOI:10.1016/j.scitotenv.2017.01.190
Jambeck J R, Geyer R, Wilcox C, et al. 2015. Plastic waste inputs from land into the ocean[J]. Science, 347(6223): 768-771. DOI:10.1126/science.1260352
Jeong C B, Won E J, Kang H M, et al. 2016. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont Rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 50(16): 8849-8857.
贾其隆, 陈浩, 赵昕, 等. 2019. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 40(9): 4105-4112.
Koelmans A A, Mohamed Nor N H, Hermsen E, et al. 2019. Microplastics in freshwaters and drinking water:Critical review and assessment of data quality[J]. Water Research, 155: 410-422. DOI:10.1016/j.watres.2019.02.054
Kokalj A J, Kunej U, Skalar T. 2018. Screening study of four environmentally relevant microplastic pollutants:Uptake and effects on Daphnia magna and Artemia franciscana[J]. Chemosphere, 208: 522-529. DOI:10.1016/j.chemosphere.2018.05.172
Kosuth M, Mason S A, Wattenberg E V. 2018. Anthropogenic contamination of tap water, beer, and sea salt[J]. Plos One, 13(4): 18.
Lares M, Ncibi M C, Sillanpaa M, et al. 2018. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 133: 236-246. DOI:10.1016/j.watres.2018.01.049
Law K L, Moret-Ferguson S E, Goodwin D S, et al. 2014. Distribution of Surface Plastic Debris in the Eastern Pacific Ocean from an 11-Year Data Set[J]. Environmental Science & Technology, 48(9): 4732-4738.
Lebreton L C M, Van Der Zwet J, Damsteeg J W, et al. 2017. River plastic emissions to the world's oceans[J]. Nature Communications, 8: 10. DOI:10.1038/s41467-017-00017-5
Lee K W, Shim W J, Kwon O Y, et al. 2013. Size-dependent effects of micro polystyrene particles in the Marine Copepod Tigriopus japonicus[J]. Environmental Science & Technology, 47(19): 11278-11283.
Lei L L, Wu S Y, Lu S B, et al. 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 619: 1-8.
Li J Y, Liu H H, Chen J P. 2018. Microplastics in freshwater systems:A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 137: 362-374. DOI:10.1016/j.watres.2017.12.056
Liu X N, Yuan W K, Di M X, et al. 2019. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China[J]. Chemical Engineering Journal, 362: 176-182. DOI:10.1016/j.cej.2019.01.033
Lusher A L, Tirelli V, O'connor I, et al. 2015. Microplastics in Arctic polar waters:the first reported values of particles in surface and sub-surface samples[J]. Scientific Reports, 5: 9.
Mai L, Bao L J, Shi L, et al. 2018. Polycyclic aromatic hydrocarbons affiliated with microplastics in surface waters of Bohai and Huanghai Seas, China[J]. Environmental Pollution, 241: 834-840. DOI:10.1016/j.envpol.2018.06.012
Mani T, Hauk A, Walter U, et al. 2015. Microplastics profile along the Rhine River[J]. Scientific Reports, 5: 7.
Maso M, Garces E, Pages F, et al. 2003. Drifting plastic debris as a potential vector for dispersing Harmful Algal Bloom (HAB) species[J]. Scientia Marina, 67(1): 107-111. DOI:10.3989/scimar.2003.67n1107
Mason S A, Garneau D, Sutton R, et al. 2016. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 218: 1045-1054. DOI:10.1016/j.envpol.2016.08.056
Mccormick A, Hoellein T J, Mason S A, et al. 2014. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 48(20): 11863-11871.
Mintenig S M, Int-Veen I, Loder M G J, et al. 2017. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 108: 365-372. DOI:10.1016/j.watres.2016.11.015
Murphy F, Ewins C, Carbonnier F, et al. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 50(11): 5800-5808.
Murphy F, Quinn B. 2018. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction[J]. Environmental Pollution, 234: 487-494. DOI:10.1016/j.envpol.2017.11.029
Nizzetto L, Langaas S, Futter M. 2016. Do microplastics spill on to farm soils?[J]. Nature, 537(7621): 488-488.
Prata J C. 2018. Airborne microplastics:Consequences to human health?[J]. Environmental Pollution, 234: 115-126. DOI:10.1016/j.envpol.2017.11.043
Qiao R X, Sheng C, Lu Y F, et al. 2019. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. Science of the Total Environment, 662: 246-253. DOI:10.1016/j.scitotenv.2019.01.245
Rainieri S, Conlledo N, Larsen B K, et al. 2018. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio)[J]. Environmental Research, 162: 135-143. DOI:10.1016/j.envres.2017.12.019
Raju S, Carbery M, Kuttykattil A, et al. 2018. Transport and fate of microplastics in wastewater treatment plants:implications to environmental health[J]. Reviews in Environmental Science and Bio-Technology, 17(4): 637-653. DOI:10.1007/s11157-018-9480-3
Schymanski D, Goldbeck C, Humpf H U, et al. 2018. Analysis of microplastics in water by micro-Raman spectroscopy:Release of plastic particles from different packaging into mineral water[J]. Water Research, 129: 154-162. DOI:10.1016/j.watres.2017.11.011
Seeley M E, Song B, Passie R, et al. 2020. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 11(1): 2372. DOI:10.1038/s41467-020-16235-3
Sul J a I D, Barletta M, Cysneiros F J A. 2013. Pelagic microplastics around an archipelago of the Equatorial Atlantic[J]. Marine Pollution Bulletin, 75(1/2): 305-309.
Sussarellu R, Suquet M, Thomas Y, et al. 2016. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(9): 2430-2435. DOI:10.1073/pnas.1519019113
Talvitie J, Heinonen M, Paakkonen J P, et al. 2015. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea[J]. Water Science and Technology, 72(9): 1495-1504. DOI:10.2166/wst.2015.360
Taylor M L, Gwinnett C, Robinson L F, et al. 2016. Plastic microfibre ingestion by deep-sea organisms[J]. Scientific Reports, 6: 9. DOI:10.1038/s41598-016-0002-7
Thompson R C, Moore C J, Vom Saal F S, et al. 2009. Plastics, the environment and human health:current consensus and future trends[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1526): 2153-2166. DOI:10.1098/rstb.2009.0053
Tsang Y Y, Mak C W, Liebich C, et al. 2017. Microplastic pollution in the marine waters and sediments of Hong Kong[J]. Marine Pollution Bulletin, 115(1/2): 20-28.
田媛, 涂晨, 周倩, 等. 2020. 环渤海海岸大气微塑料污染时空分布特征与表面形貌[J]. 环境科学学报, 40(4): 1401-1409.
Van Cauwenberghe L, Vanreusel A, Mees J, et al. 2013. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution, 182: 495-499. DOI:10.1016/j.envpol.2013.08.013
Waller C L, Griffiths H J, Waluda C M, et al. 2017. Microplastics in the Antarctic marine system:An emerging area of research[J]. Science of the Total Environment, 598: 220-227. DOI:10.1016/j.scitotenv.2017.03.283
Wang W F, Ndungu A W, Li Z, et al. 2017. Microplastics pollution in inland freshwaters of China:A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 575: 1369-1374. DOI:10.1016/j.scitotenv.2016.09.213
Wei W, Huang Q S, Sun J, et al. 2019. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A[J]. Environmental Science & Technology, 53(5): 2509-2517.
Wright S L, Kelly F J. 2017. Plastic and Human Health:A Micro Issue?[J]. Environmental Science & Technology, 51(12): 6634-6647.
Wright S L, Rowe D, Thompson R C, et al. 2013. Microplastic ingestion decreases energy reserves in marine worms[J]. Current Biology, 23(23): R1031-1033. DOI:10.1016/j.cub.2013.10.068
汪文玲, 龙邹霞, 余兴光, 等. 2019. 厦门市筼筜污水处理厂中微塑料的特征研究[J]. 海洋环境科学, 38(2): 205-210.
Xiong X, Zhang K, Chen X C, et al. 2018. Sources and distribution of microplastics in China's largest inland lake-Qinghai Lake[J]. Environmental Pollution, 235: 899-906. DOI:10.1016/j.envpol.2017.12.081
Xu X Y, Lee W T, Chan A K Y, et al. 2017. Microplastic ingestion reduces energy intake in the clam Atactodea striata[J]. Marine Pollution Bulletin, 124(2): 798-802. DOI:10.1016/j.marpolbul.2016.12.027
许霞, 侯青桐, 薛银刚, 等. 2018. 污水厂中微塑料的污染及迁移特征研究进展[J]. 中国环境科学, 38(11): 4393-4400.
Yan M T, Nie H Y, Xu K H, et al. 2019. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 217: 879-886. DOI:10.1016/j.chemosphere.2018.11.093
Yang D Q, Shi H H, Li L, et al. 2015. Microplastic Pollution in Table Salts from China[J]. Environmental Science & Technology, 49(22): 13622-13627.
Yang L B, Li K X, Cui S, et al. 2019. Removal of microplastics in municipal sewage from China's largest water reclamation plant[J]. Water Research, 155: 175-181. DOI:10.1016/j.watres.2019.02.046
Zettler E R, Mincer T J, Amaral-Zettler L A. 2013. Life in the "Plastisphere":Microbial Communities on Plastic Marine Debris[J]. Environmental Science & Technology, 47(13): 7137-7146.
Zhang C N, Wang S D, Sun D, et al. 2020a. Microplastic pollution in surface water from east coastal areas of Guangdong, South China and preliminary study on microplastics biomonitoring using two marine fish[J]. Chemosphere, 256: 8.
Zhang D D, Liu X D, Huang W, et al. 2020b. Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean[J]. Environmental Pollution, 259: 9.
Zhang K, Su J, Xiong X, et al. 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 219: 450-455. DOI:10.1016/j.envpol.2016.05.048
Zhang K, Xiong X, Hu H J, et al. 2017a. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology, 51(7): 3794-3801.
Zhang Q, Xu E G, Li J, et al. 2020c. A Review of Microplastics in Table Salt, Drinking Water, and Air:Direct Human Exposure[J]. Environmental Science & Technology, 54(7): 3740-3751.
Zhang W W, Zhang S F, Wang J Y, et al. 2017b. Microplastic pollution in the surface waters of the Bohai Sea, China[J]. Environmental Pollution, 231: 541-548. DOI:10.1016/j.envpol.2017.08.058
Zhang Y T, Wei W, Sun J, et al. 2020d. Long-term effects of polyvinyl chloride microplastics on anaerobic granular sludge for recovering methane from wastewater[J]. Environmental Science & Technology, 54(15): 9662-9671.
Zhao S Y, Zhu L X, Wang T, et al. 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China:first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 86(1/2): 562-568.
Ziajahromi S, Neale P A, Rintoul L, et al. 2017. Wastewater treatment plants as a pathway for microplastics:Development of a new approach to sample wastewater-based microplastics[J]. Water Research, 112: 93-99. DOI:10.1016/j.watres.2017.01.042