环境科学学报  2020, Vol. 40 Issue (6): 2142-2149
BTEX在乙醇汽油和传统汽油污染地下水中的衰减行为对比    [PDF全文]
陈余道, 和乐为, 夏源, 程亚平, 蒋亚萍    
桂林理工大学环境科学与工程学院, 桂林 541006
摘要:地下燃油储藏罐泄漏造成苯、甲苯、乙苯和二甲苯(BTEX)影响生态环境和公众健康的问题一直备受关注,随着乙醇汽油的推广使用,乙醇对BTEX修复策略的影响成为需要重视的新问题.为揭示乙醇汽油污染地下水中BTEX的衰减行为,本文通过室内两个独立砂槽投注实验和近3年的监测,对比了乙醇汽油和传统汽油中BTEX自然衰减和基于硫酸盐-硝酸盐补充的增强生物修复行为.结果表明,传统汽油BTEX自然衰减较快,乙醇汽油BTEX自然衰减较慢,一级衰减速率常数分别为0.0055~0.0329 d-1和0.0045~0.0124 d-1;苯衰减最快,其次为甲苯.补充硫酸盐和硝酸盐能促进生物修复,单独补充硫酸盐时其利用率为89.7%~92.9%,同时补充硝酸盐时硫酸盐利用被抑制,硝酸盐利用率为79.9%~87.2%.水位波动会促进BTEX溶解和迁移,增大质量通量.乙醇汽油不仅能消耗更多电子受体,使得BTEX衰减被抑制,而且可能会扩大水位波动引起的增溶效应.
关键词BTEX    乙醇汽油    自然衰减    增强生物修复    水位波动    地下水    
Comparison of BTEX attenuation behaviors between ethanol gasoline and tradition gasoline in contaminated groundwater
CHEN Yudao, HE Lewei, XIA Yuan, CHENG Yaping, JIANG Yaping    
College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006
Received 8 January 2020; received in revised from 28 February 2020; accepted 28 February 2020
Abstract: Leakages of underground fuel storage tanks that cause the impacts of benzene, toluene, ethylbenzene, and xylene (BTEX) on the ecological environment and public health have been commonly concerned. With the increasing utilization of ethanol gasoline, the ethanol influence on the remediation of BTEX in groundwater is a new problem, requiring more understandings. To gain insight into the behaviors of BTEX attenuation in groundwater contaminated by ethanol gasoline, sand-tank injection experiments were performed. Traditional gasoline and ethanol gasoline were injected into two separate sand tanks, respectively. Natural attenuation and enhanced bioremediation of BTEX based on sulfate and nitrate amendments were monitored for about three years. The results showed that the attenuation of BTEX in traditional gasoline was faster than that in ethanol gasoline. The first-order decay rate constants were 0.0055~0.0329 d-1 and 0.0045~0.0124 d-1, respectively. Benzene attenuation was the fastest, followed by toluene attenuation. The addition of sulfate and nitrate could enhance the bioremediation. The utilization rate of sulfate reached 89.7%~92.9% when it was added alone, which could be inhibited when nitrate was added simultaneously. The utilization rate of nitrate was 79.9%~87.2%. Water level fluctuation promoted BTEX dissolution and migration, causing the increase in mass flux. Ethanol not only preferentially consumed more available electron receptors that could otherwise enhance BTEX biodegradation, but also likely stimulated BTEX solubilization caused by water level fluctuation.
Keywords: BTEX    ethanol gasoline    natural attenuation    enhanced bioremediation    water level fluctuation    groundwater    
1 引言(Introduction)

地下水因遭受非水相液体(Non-aqueous Phase Liquids)的污染而受到广泛关注(CL:AIRE, 2017; Qian et al., 2018; Palma et al., 2019).目前, 我国加油站地下储藏罐泄漏已进入高发年, 完全有可能成为我国第一大地下有机污染源(姜月华等, 2011).随着我国推广使用车用乙醇汽油(Ethanol gasoline)(中国能源编辑部, 2017), 乙醇抑制溶解组分苯、甲苯、乙苯和二甲苯同分异构体(简称BTEX)的生物降解使得地下水安全面临新的挑战(陈余道, 2009Steiner et al., 2018; Rama et al., 2019).

溶解性BTEX在地下水中会经历对流、弥散、吸附、生物降解、化学转化、稀释和挥发等自然衰减(Natural Attenuation, NA)(蒋亚萍等, 2009Chen et al., 2013; Chiu et al., 2017), 监测自然衰减(Monitored Natural attenuation, MNA)已成为近二十年内欧美国家评价BTEX安全风险的重要技术, 生物降解是MNA中BTEX衰减的主要机理(O′Reilly et al., 2016; Azubuike et al., 2016).然而, 由于MNA具有耗时长的缺陷, 基于MNA的增强生物修复(Enhanced Bioremediation, EBR)成为一种成本低、效率高、生态环境友好的修复技术(Thornton et al., 2010; Zhao et al., 2015; O′Connor et al., 2018).

近年来, 有关乙醇汽油的研究更多地集中在地下水污染的修复策略方面.例如, Corseuil等(2015)通过乙醇汽油(含24%乙醇)污染现场投注硝酸盐的试验发现, 硝酸盐能有效促进地下水中乙醇的去除;Steiner等(2018)认为如果含水层中有充足的可利用电子受体, 则能够通过长期MNA方法修复乙醇汽油(含10%乙醇)污染含水层;Rama等(2019)通过野外开展的乙醇汽油投注对比试验(分别含乙醇85%和24%), 认为流水条件下高浓度乙醇对BTEX的迁移和溶解具有促进作用.相较而言, 我国在该领域的研究十分缺乏, 尤其是缺少实验室或现场乙醇汽油泄漏试验研究的成果.随着乙醇汽油的推广使用, 发展该类地下水污染的防控技术十分必要.

因此, 本研究利用实验室2个构造相同的含水砂槽装置(5.8 m×1.3 m×1.3 m), 分别投注传统汽油和乙醇汽油(含10%乙醇, V/V), 模拟浅层的汽油污染含水层.经过近3年的监测, 对比含水介质中BTEX在MNA和EBR两个阶段的行为, 以及对水位波动的响应特征, 以揭示乙醇汽油BTEX在地下水中的迁移行为特征及其与传统汽油的差异.经查阅与检索, 本文是国内第一个开展乙醇汽油(10%乙醇和90%汽油)泄漏实验的研究实例, 且具有较长的监测时间, 期望对推动我国该类污染防控具有借鉴作用.

2 材料与方法(Materials and methods) 2.1 实验装置

实验砂槽装置为砖混结构, 长5.8 m、宽2.9 m、高1.3 m.装置两端用网状不锈钢板分隔, 形成水槽+砂槽+水槽的格局, 具体如图 1所示.两端水槽用来注水和抽水并控制中间砂槽水位, 中间砂槽用砖墙均分隔成两个构造相同的砂槽(长5.8 m、宽1.3 m、高1.3 m), 用来分别投注传统汽油和乙醇汽油并对比BTEX在含水介质中的迁移, 后面分别称传统汽油槽(Traditional gasoline tank, TG-tank)和乙醇汽油槽(Ethanol gasoline tank, EG-tank).充填TG-tank和EG-tank的沉积物粒径为0.05~0.25 mm, 主要成分为SiO2(77.73%)、Al2O3(11.046%)、Fe2O3(3.769%)、CaO(1.723%)和MgO(0.051%)(陈余道等, 2016), 充填层厚0.90 m, 并上覆0.30 m厚的粘土层.装置设置了40个PVC取样孔, 分A~E列, 每个取样孔在距离底部以上15、30、45、60、75 cm处设置分层取样点;同时, 设置了12个水位观测孔(W1~W12)和2个投注孔, 投注孔底部距离槽底45 cm.

图 1 实验室砂槽装置平面图(a)和剖面图(b) Fig. 1 Plan(a) and section(b) of sand tank device in the laboratory

利用蠕动泵向装置供水, 水源为桂林理工大学雁山校园地下水, 水化学指标为:溶解氧8.2 mg·L-1、硝酸盐6.9 mg·L-1、硫酸盐6.9 mg·L-1、总有机碳2.12 mg·L-1、电导率184 μS·cm-1、pH值7.8.TG-tank和EG-tank具有统一水头边界, 初始水平水位为55 cm.蠕动泵在两端水槽等流量(30~40 mL·min-1)注水和抽水, 平均水力坡度为0.001, 平均达西速度为0.042 m·d-1.含水介质有效孔隙度为0.3, 渗透系数为41.5 m·d-1, 给水度为0.12, 纵向弥散度为0.025 m(Sun et al., 2018).

2.2 汽油投注和电子受体补充

分别利用TG-tank和EG-tank投注孔, 投注加油站购买的92#传统汽油和配置的乙醇汽油(含10%乙醇), 投注量均为3 L, 投注流速约为500 mL·h-1.汽油投注后进入MNA阶段, 监测BTEX在介质中的迁移行为;第417 d进入EBR阶段, 开始向进水中添加硫酸盐(300 mg·L-1), 第696 d同时添加硝酸盐(100 mg·L-1);第972 d停止添加硫酸盐和硝酸盐, 进水水质恢复到背景值.

2.3 监测和取样分析

通过采集取样孔分层水样监测水质变化(如C2-45, 表示C2孔45 cm层位), 监测时间合计1135 d.采集水样分析BTEX组分和乙醇浓度, 以及溶解氧、硝酸盐、硫酸盐、甲烷等无机组分和水化学指标;监测水位变化.采用气相色谱仪(Agilent 6890 N)分析BTEX和乙醇(Chen et al., 2013), 气相色谱仪(GC126)分析甲烷(黎柳月等, 2018), 离子色谱仪(DIONEX ICS-1000 IC)分析硝酸盐和硫酸盐, WTW仪器(Multi 3420)测量DO指标.

2.4 数据处理

质量通量计算:对投注点下游断面A2~E2、A6~E6等, 以B、D列距离为宽、15~45 cm为高度的直立矩形作为计算断面, 利用分层监测结果估算单位时间内通过断面的BTEX总质量(蒋灵芝等, 2016).

BTEX衰减参数计算:以C列为中央线, 对监测点BTEX浓度-时间曲线进行时间矩分析, 估算BTEX溶解晕(Dissolved plume)穿越监测点的平均滞留时间(Mean residence time, MRT).监测点浓度分布的n阶时间矩(Mn)和MRT用式(1)~(2)表示(Govindaraju et al., 2010).

(1)
(2)

式中, c(x, t)为BTEX在监测点x、时间t的浓度;M0为零阶矩, 表示浓度-时间曲线下的面积;M1为一阶矩, 假设BTEX浓度衰减符合单指数函数, k为衰减速率常数(d-1), c0为浓度衰减初值(mg·L-1), 则M1等于c0/k2 (Johanson, 2010).本文取浓度峰值为c0来估测浓度衰减速率常数k.

3 结果与讨论(Results and discussion) 3.1 源区BTEX溶解特征

通过投注点采集水样测定下清液, 第92 d后TG-tank和EG-tank投注源区BTEX溶解浓度分别为0.288~40.028 mg·L-1和16.131~100.298 mg·L-1;第490 d后TG-tank和EG-tank中BTEX浓度分别为 < 2 mg·L-1和16.131~28.524 mg·L-1.根据我国原93#汽油组分分析(章虎等, 2003)可知, BTEX占汽油混合物质量比例为15.7%.采用汽油混合物分子量为105 g·mol-1 (CL: AIRE, 2017), 运用Raoult定律估算, 静水中BTEX有效溶解度为89.2 mg·L-1.与该值相比, 该实验源区BTEX溶解浓度的检测结果是可信的.EG-tank源区BTEX溶解浓度较高, 可能与乙醇的增溶效应有关(Molson et al., 2002), 流水条件也可能促进了溶解作用(Teramoto et al., 2017).

3.2 源区下游BTEX质量衰减 3.2.1 过水断面上BTEX质量通量

根据TG-tank和EG-tank投注点下游分层监测结果, BTEX在纵向、横向和垂向上存在不同程度的扩散, 且以沿水流方向的纵向迁移为主.从图 2第30 d、第71 d和第118 d监测断面BTEX浓度等值线可以看出, BTEX浓度沿中央线C列向下游、向深部、向两侧逐渐衰减, C列45 cm层位浓度可以反映介质中BTEX的衰减行为;另外, 在衰减过程中受其他因素(如水位波动)影响, BTEX浓度存在回升的情况(图 2中第118 d).

图 2 投注点下游监测断面BTEX浓度的时空分布 Fig. 2 Spatial and temporal distribution of BTEX concentrations on the monitoring sections downgradient of injection well

TG-tank中A2~E2至A4~A4断面、EG-tank中A6~E6至A8~E8断面在不同时间点的BTEX质量通量逐渐降低, 计算结果如表 1所示.BTEX质量通量沿水流路径均呈下降趋势, 在时间上也呈下降趋势, 表明BTEX存在自然衰减过程(蒋灵芝等, 2016; CL:AIRE, 2017; Verhinelli et al., 2018).

表 1 投注点下游监测断面BTEX质量通量计算结果 Table 1 Calculated results of BTEX mass flux on the monitoring sections downgradient of injection well
3.2.2 中央线C列上BTEX衰减速率

图 3是TG-tank和EG-tank中C列45 cm层位各监测点(C1~C4、C5~C8)BTEX浓度-时间过程图.可以看出, TG-tank和EG-tank中投注点上游C1-45和C5-45的BTEX浓度很低, 平均浓度分别为0.115 mg·L-1和0.230 mg·L-1, 最大浓度分别为0.925 mg·L-1和2.315 mg·L-1, BTEX检出与投注汽油轻微回流有关.在投注点下游, C2-45和C6-45的BTEX浓度最高, 随着水流路径增加, 监测浓度逐渐下降.其中, C2-45在第30 d和第118 d出现了BTEX浓度峰值, 分别为43.565 mg·L-1和42.463 mg·L-1, 第600 d以后BTEX呈现未检出状态;C6-45出现了多次峰值, 在第118、363和793 d的峰值浓度分别为79.411、49.299和20.601 mg·L-1, 峰值浓度、峰出现次数明显多于C2-45.浓度多峰的现象与水位波动有关系(Teramoto et al., 2017), 从图 3水位动态图可以看出, BTEX浓度峰值的出现在时间上与水位具有对应关系, 尤其是EG-tank中C6-45处BTEX浓度峰值出现与水位波动更为明显.

图 3 C列BTEX浓度变化与水位波动 Fig. 3 Changes of BTEX concentrations on C column associated with fluctuation of water table

根据时间矩分析, BTEX各组分的MRT和一级衰减速率常数k表 2所示.TG-tank中BTEX各组分MRT为37~274 d, k为0.0055~0.0329 d-1, 半衰期为21~126 d.EG-tank中BTEX各组分MRT为93~479 d, k为0.0045~0.0124 d-1, 半衰期为56~155 d.与TG-tank比较, EG-tank中BTEX的MRT较长, k较小, 半衰期较长.

表 2 主要监测点BTEX溶解晕平均滞留时间和衰减速率常数 Table 2 Mean residence time and attenuation rate constants of BTEX dissolved plume through the main monitoring wells

对比EG-tank和EG-tank中BTEX各组分MRT可以发现, 苯的MRT较短, 衰减较快, 其次为甲苯, 而乙苯和二甲苯MRT较长且具有相似的特征.其原因与它们的迁移能力、水相溶解度、汽油组分质量比例和生物可降解性有关.首先, 苯迁移能力强和水相溶解度高, 其次为甲苯, 而乙苯和二甲苯的迁移能力较低, 溶解度也较小(Thornton et al., 2010);其次, 国内原93#汽油BTEX各组分的质量比例为甲苯(14.45%)>间二甲苯(0.37%)>邻二甲苯(0.36%)>乙苯(0.25%)>对二甲苯(0.22%)>苯(0.09%)(章虎等, 2003), 苯占有的质量最少;尽管甲苯占有汽油质量比例较大, 但甲苯也是BTEX中最容易被生物代谢的化合物(Chen et al., 2008; Zhao et al., 2015), 因此也相对容易衰减.

3.3 补充电子受体的利用

在MNA阶段(第417 d之前), TG-tank和EG-tank中溶解氧平均浓度均小于1.0 mg·L-1, 第414 d实测甲烷浓度分别为0.203~2.788 mg·L-1和0.511~3.402 mg·L-1, 表明水环境转变成了厌氧环境, 生物降解是自然衰减的主要机理(O′Reilly et al., 2016; Azubuike et al., 2016; CL: AIRE, 2017; Chiu et al., 2017);同时可以看出, EG-tank中甲烷生成浓度大于TG-tank.以化合物苯为例, 衰减过程生成甲烷的化学反应式见式(3).

(3)

在EBR阶段(第417~972 d期间), 砂槽中电子受体得到了人为补充.在第417 d和第696 d先后提高了进水中硫酸盐和硝酸盐浓度, 目标值分别为300 mg·L-1和100 mg·L-1, 导致TG-tank和EG-tank中两种离子浓度大幅度上升.按照水流实际流速, 在39 d内进水可以更新砂槽水体.第972 d, 停止补充硫酸盐和硝酸盐后, 各监测点的硫酸盐和硝酸盐浓度逐步回归到MNA阶段的水平.整个实验MNA和EBR阶段硫酸盐和硝酸盐浓度变化如图 4所示.

图 4 砂槽中硫酸盐和硝酸盐浓度的变化 Fig. 4 Concentration changes of sulfate and nitrate in TG-tank and EG-tank

然而, 在EBR第462~672 d时段内, C1~C4和C5~C8区间沿水流路径硫酸盐浓度明显下降, 平均浓度分别下降89.7%和92.9%;在同时补充硝酸盐的第696~972 d, C1~C4和C5~C8区间的硝酸盐平均浓度分别下降79.9%和87.2%, 但硫酸盐平均浓度变化小, 相对误差分别为10.9%和-1.6%.相比较, EG-tank对硫酸盐和硝酸盐的利用比例比TG-tank更大.C列45 cm监测点BTEX、硫酸盐和硝酸盐在不同阶段的浓度变化如表 3所示.

表 3 主要监测点BTEX、硫酸盐和硝酸盐浓度统计 Table 3 Concentration Statistics of BTEX, sulfate and nitrate at the main monitoring wells  

EBR阶段硫酸盐和硝酸盐浓度的下降, 表明介质中发生了硫酸盐还原和硝酸盐还原作用, 硫酸盐和硝酸盐因此被微生物消耗(Chen et al., 2008; Zhao et al., 2015; Corseuil et al., 2015; 陈余道等, 2016).本实验在产甲烷状态下仅补充硫酸盐时, 发生了硫酸盐还原作用;当同时补充硝酸盐和硫酸盐时, 由于硝酸盐标准氧化还原电位(E0= + 1.23V)比硫酸盐(E0= + 0.301V)强, 微生物能够优先利用硝酸盐作为电子受体, 产生硝酸盐还原作用(Wiedemeier et al., 1999; Da Silva et al., 2012), 从而导致硫酸盐的利用被抑制.以化合物苯为例, 硝酸盐还原和硫酸盐还原反应式如下式所示:

(4)
(5)

在EG-tank, 投注点第56 d乙醇浓度达1549.9 mg·L-1, 第143 d降为13.2 mg·L-1, 而下游C6-45基本没有检测到乙醇.由于乙醇比BTEX更容易被微生物代谢, 乙醇的代谢能够抑制BTEX生物代谢(Chen et al., 2008; Steiner et al., 2018).比如从第30~286 d, TG-tank中甲苯占BTEX的浓度比重从51%下降到22%, 而EG-tank中甲苯占BTEX的浓度比重分别为54%和55%, 没有明显变化.甲苯是BTEX中相对容易被降解的组分, 但在EG-tank中的降解受到了抑制.这说明乙醇的存在是导致BTEX组分残留增多、BTEX滞留时间延长和衰减速率降低的主要原因.前面所述的EG-tank中水位波动导致BTEX浓度多峰的现象, 实际上也与BTEX存在更多残留分不开, 这可能体现了乙醇对水位波动影响的增强作用.

4 结论(Conclusions)

1) 自然衰减中, 传统汽油的BTEX衰减速度比乙醇汽油快, 且甲烷产生量较小.化合物苯衰减较快, 其次为甲苯, 而乙苯和二甲苯衰减较慢, 主要原因与化合物的迁移能力、水相溶解度、汽油组分质量比例和生物可降解性有关.

2) 补充硫酸盐和硝酸盐作为电子受体能够增强生物修复.单独补充硫酸盐可促进硫酸盐还原作用, 但同时补充硫酸盐和硝酸盐时则以硝酸盐还原作用为主, 硫酸盐还原作用受到抑制.乙醇汽油能消耗更多的硝酸盐和硫酸盐电子受体, 并导致BTEX组分残留增加, 这是BTEX滞留时间延长、衰减速率降低的主要原因.

3) 水位波动能引起汽油BTEX浓度和质量通量增大, 但乙醇导致BTEX残留增多可能对水位波动的效应具有增强作用.

参考文献
Azubuike C C, Chikere C B, Okpokwasili G C. 2016. Bioremediation techniques-classification based on site of application:principles, advantages, limitations and prospects[J]. World Journal of Microbiology and Biotechnology, 32(11): 180. DOI:10.1007/s11274-016-2137-x
Chen Y, Jiang Y, Zhu Y, et al. 2013. Fate and transport of ethanol-blended dissolved BTEX hydrocarbons:a quantitative tracing study of a sand tank experiment[J]. Environmental Earth Sciences, 70(1): 49-56. DOI:10.1007/s12665-012-2102-4
Chen Y D, Barker J F, Gui L. 2008. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol:A microcosm study[J]. Journal of Contaminant Hydrology, 96(1/4): 17-31.
陈余道. 2009. 乙醇对含水层中燃油芳香烃内在生物修复的潜在风险[J]. 环境科学与技术, 32(11): 115-119. DOI:10.3969/j.issn.1003-6504.2009.11.027
陈余道, 程亚平, 蒋亚萍, 等. 2016. 岩溶地下河反硝化作用的有限性-一个碳酸盐岩管道的实验研究[J]. 环境科学学报, 36(10): 3629-3635.
Chiu H Y, Verpoort F, Liu J K, et al. 2017. Using intrinsic bioremediation for petroleum hydrocarbon contaminated groundwater cleanup and migration containment:Effectiveness and mechanism evaluation[J]. Journal of the Taiwan Institute of Chemical Engineers, 72: 53-61. DOI:10.1016/j.jtice.2017.01.002
CL: AIRE.2017.Petroleum hydrocarbons in groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies[R].London: CL: AIRE
Corseuil H X, Gomez D E, Schambeck C M, et al. 2015. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation[J]. Journal of Contaminant Hydrology, 174: 1-9. DOI:10.1016/j.jconhyd.2014.12.004
Da Silva M L B, Corseuil H X. 2012. Groundwater microbial analysis to assess enhanced BTEX biodegradation by nitrate injection at a gasohol-contaminated site[J]. International Biodeterioration & Biodegradation, 67: 21-27.
Govindaraju R S, DAS B S. 2010. Moment Analysis for Subsurface Hydrologic Applications[M]. Netherlands: Springer.
蒋灵芝, 陈余道, 邓超联, 等. 2016. 应用质量通量评估地下水中BTEX和乙醇的自然衰减[J]. 高校地质学报, 22(2): 395-400.
蒋亚萍, 陈余道, 朱义年, 等. 2009. 地下水中乙醇汽油溶解组分运移与生物降解的研究[J]. 水利学报, 40(7): 878-884. DOI:10.3321/j.issn:0559-9350.2009.07.016
姜月华, 周迅, 周权平, 等. 2011. 加油站渗漏污染地质雷达特征及其启示-以贵阳市省府加油站为例[J]. 地球科学前沿, (1): 17-28.
Johanson G. 2010. 1.08-Modeling of disposition[J]. Comprehensive Toxicology(Second Edition), 1: 153-177.
黎柳月, 陈余道, 吴圣华, 等. 2018. 快速检测水样中甲烷含量的气相色谱法[J]. 环境科学与技术, 41(11): 143-148.
Molson J W, Barker J F, Frind E O, Schirmer M. 2002. Modeling the impact of ethanol on the persistence of benzene in gasoline contaminated groundwater[J]. Water Resources Research, 38(1): 1-12.
O'Connor D, Hou D, Sik Ok Y, et al. 2018. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials:A review[J]. Journal of Controlled Release, 283: 200-213. DOI:10.1016/j.jconrel.2018.06.007
O'Reilly K, Devine C E, Sihota N, et al. 2016. An empirical evaluation of the influence of ethanol on natural attenuation of gasoline constituents[J]. Groundwater Monitoring & Remediation, 36(3): 62-72.
Palma E, Espinoza T A, Daghio M, et al. 2019. Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system:Substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant[J]. New Biotechnology, 53: 41-48. DOI:10.1016/j.nbt.2019.06.004
Qian H, Zhang Y, Wang J, et al. 2018. Characteristics of petroleum-contaminated groundwater during natural attenuation:a case study in northeast China[J]. Environmental Monitoring Assessment, 190: 80. DOI:10.1007/s10661-017-6449-6
Rama F, Ramos D T, Muller J B, et al. 2019. Flow field dynamics and high ethanol content in gasohol blends enhance BTEX migration and biodegradation in groundwater[J]. Journal of Contaminant Hydrology, 222: 17-30. DOI:10.1016/j.jconhyd.2019.01.003
Steiner L V, Ramos D T, Liedke A M R, et al. 2018. Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies[J]. Journal of Environmental Management, 212(212): 8-16.
Sun L, Chen Y, Jiang L, et al.2018.Numerical simulation of the effect about groundwater level fluctuation on the concentration of BTEX dissolved into source zone[C].Iop Conference Series: Earth & Environmental Science https://www.researchgate.net/publication/323503514_Numerical_Simulation_of_the_Effect_about_Groundwater_Level_Fluctuation_on_the_Concentration_of_BTEX_Dissolved_into_Source_Zone
Teramoto E H, Chang H K. 2017. Field data and numerical simulation of BTEX concentration trends under water table fluctuations:Example of a jet fuel-contaminated site in Brazil[J]. Journal of Contaminant Hydrology, 198: 37-47. DOI:10.1016/j.jconhyd.2017.01.002
Thornton S F, Banwart S A.2010.Natural attenuation of hydrocarbon compounds in groundwater//Handbook of Hydrocarbon and Lipid Microbiology[M].Berlin: Heidelberg Springer
Verginelli I, Pecoraro R, Baciocchi R. 2018. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites[J]. Science of The Total Environment, 619-620: 470-479. DOI:10.1016/j.scitotenv.2017.11.100
Wiedemeier T H, Wilson J H, Kampbell D H.1999.Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater, vol 1[R].San Antonio, TX: Air Force Center for Environmental Excellence, Technology Transfer Division Brooks AFB https://www.researchgate.net/publication/255260354_Technical_Protocol_for_Implementing_Intrinsic_Remediation_With_Long-Term_Monitoring_for_Natural_Attenuation_of_Fuel_Contamination_Dissolved_in_Ground_Water
Zhao Y, Qu D, Hou Z, et al. 2015. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors[J]. Environmental Technology, 36(5): 615-621. DOI:10.1080/09593330.2014.954006
章虎, 陈关喜, 冯建跃. 2003. 93号汽油样品组分的GC-MS分析[J]. 分析测试学报, 22(5): 56-59. DOI:10.3969/j.issn.1004-4957.2003.05.016
中国能源编辑部. 2017. 《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》印发[J]. 中国能源, 39(9): 1-1.